
Computer Numbering Systems

There are three different numbering systems used with computers: decimal, binary and
hexadecimal. The decimal numbering system is the normal human numbering system we use
every day. The binary numbering system is the system used by computers since computers
can only represent 2 different states (on or off/ 1 or 0). The hexadecimal numbering system is
a shorthand method for representing large/long binary numbers since humans have difficulty
with binary.

All three numbering systems have different bases and universe of digits. The universe of digits
is the set of characters which represent a valid digit in the numbering system. In the decimal
numbering system the base is 10 and the universe of digits is 0 – 9. For example, the token &1
does not represent a valid decimal number because the character & is not within the universe
of digits for decimal numbers. Note they are ordered from 0 to 9 as well (e.g.
0<1<2<3<4….<9).

Humans are information specialists. We are so good that we aren’t even aware we are
applying an algorithm every time we work with numbers. As a basis, we are going to
continually review what we know about the decimal number system and apply it to Binary as
we use the same algorithms and thinking regardless of the numbering system’s base (i.e.
decimal is base 10, binary is base 2 and Hexadecimal is base 16).

Binary Introduction

Why Binary?

Computers need to use binary because they can only detect 2 states, on and off, just
like a light switch. This is represented with a positive voltage (on) or no voltage (off). (It
is too difficult and expensive to design a computer to detect 10 different or varying
voltages.)

Learning Binary – Relax

The best advice I can give is don’t try to hard. Humans are information processing
specialists. Our brains know the algorithms so well that our brains have developed
short cuts. Our thinking is so advanced we don’t even know what we know. So just
relax as this can be quite easy if rely on our knowledge of the decimal number system
rather than our rote usage of it. I recommend you read each sentence/paragraph and
pause (Take a few breaths and reread the passage to reflect upon the knowledge
presented.)

Binary terminology

Binary is a number system based on switches called bits. (Binary Digits) First, some

terminology:

 Each bit is switch.

 Four bits is called a nibble.

 Eight bits is called a byte.

If the switch is on, the value of the switch is 1. If the switch off, the value of the switch is 0.

Why people find binary "different"

There are few things about binary numbers that make them different to the plain vanilla
decimal (base10) numbers that surround us every day.

1. Binary only uses two of the digits that we are used to - 0 and 1

2. We need to learn to read them right to left (like decimal the smallest or least
significant bit is on the right)

So, step 1 to binary success is to accept point 1 and just accept point 2!

Counting in Decimal

Let us revisit how we count in decimal. We begin with 0 and add 1 to 0 which gives us 1.
To find the next number we add the integer 1 to it or 1 + 1 = 2. We continue this until we
run out of numbers (e.g. 9 + 1 = ?) when we find we have to carry a one to the next
positional place (e.g. 9 + 1 = 10). If we analyze this number we find that we have 1 x 10 +
0 x 1’s. We now see that we have place values associated with the powers of 10 (decimal
means 10). Our counting algorithm is:

Counting Algorithm

 Start:

 Begin with 0

 Add 1 to present number to obtain the next or successive number

 If the present number is the last number in the sequence (Decimal = 9)

We start over at 0 carrying or adding the one to the next higher
decimal place

 Goto Start:

 Decimal Positional Table

107 106 105 104 103 102 101 100

10000000 1000000 100000 10000 1000 100 10 1

Counting in Binary

We use the same algorithm as above for decimal however we are now in base 2 and
can only use 0 and 1. Note the table of binary powers and positional values below.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

 Start:
 Begin with 0
 Add 1 to present number to obtain the next or successive number
 If the present number is 1 (we only have 0 and 1)

We start over at 0 carrying the one to the next decimal place
 Goto Start:

 0
 1 (0+1  1)
 10 (There is no 2 so we carry the 1 and begin with 0 in the 1’s place)
 11 (10 + 1  11)
 100 (11 + 1  record a 0 in the 1’s place and carry the 1 to the 2’s place

noting this results in a 0 and causes 1 to be carried and added to the 4’s
place… this is analogous to decimal 99 + 1 where 1 + 9 is 10 => carry the
1 to the 10’s place, 1 + 9 is 10 carry the 1 to the 100’s place)

 101 (100 + 1  101)
 110 (101 + 1  record a 0 and carry the 1)
 111 (110 + 1  111)
 1000 (111 + 1 results in the 1 being carried 3 times)

Determining a Decimal Number’s Value

 To start, let’s review what we know (or have forgotten) in a familiar system – decimal.

Everybody knows what value of decimal 975 is. We don’t even think about it as (9 x 100) + (7
x 10) + (5 x 1)  975. Some of you probably just added 5 with out multiplying it by 1 skipping
that portion of the algorithm as we consider this common sense (e.g. (9 x 100) + (7 x 10) + 5
 975. We know that we multiply the place holding values (e.g. 9, 7 and 5) by their positional
values (e.g. 100, 10 and 1) which are powers of 10 (i.e. decimal)

What if I asked you to create an algorithm to separate out the individual digits of 975? Some
of you would look at the powers of 10 and their positional values. We would find the Largest
Common Denominator (LCD) and divide the number by this LCD to extract the individual
values. We would then apply the same algorithm to the remainder.

103 102 101 100

1000s 100s 10s 1s

Let’s see:
There are no 1000s in 975
There are 9 100s in 975
There are 7 10s in 975
There are 5 1’s in 975

How did we do this? (This is algorithm development)

We found the Largest Common Denominator (LCD) in base 10.
Divided the number by this LCD
Saved the remainder and used it as the new number.
975/100  9 remainder 75 (LCD is 100)
75/10  7 remainder of 5 (LCD is 10)
5/1  5 (LCD is 1)

With a number like 907 we do the following to strip out the individual digits
907/100  9 remainder 07 (LCD is 100)
07/10  0 remainder of 7 (LCD is 10) but me make sure we record the 0
7/1  7 (LCD is 1)

Understanding binary’s numeric value in base 10

In these examples we will work with 8-bit binary (1 byte). You can work with larger or smaller
units but the byte is the most commonly used one.

OK, let's take a look at a byte of binary

01101101

OK, so the first thing to remember is to read the byte from right to left. Let's make things
easier by creating a table:

Switch
On = 1
Off = 0

0 1 1 0 1 1 0 1

Bit Position 8 7 6 5 4 3 2 1

Bit Value in decimal 128 64 32 16 8 4 2 1

Positional Powers 27 26 25 24 23 22 21 20

Bit position is simply the position of the bit from the right - the bit furthest to the right is bit 1 and the
bit on the left is number 8.

Decimal value of a bit is dependant on the position of the bit in the byte. The decimal value of the first
bit is 1, the second 2 and so on. The eighth bit has a decimal value of 128. These correspond to
powers of 2. (In decimal we use powers of 10 e.g. 1’s place, 10’s place, 100’s place, 1000,s place…
etc.) Converting a byte into decimal is simply adding up the decimal values of each on bit in the byte.

Highlight all the on bits and ignore the off bits:

Switch
On = 1
Off = 0

0 1 1 0 1 1 0 1

Bit Position 8 7 6 5 4 3 2 1

Bit Value in decimal 128 64 32 16 8 4 2 1

01101101 = 64 + 32 + 8 + 4 + 1

Bit 8 = 0
Bit 7 = 64
Bit 6 = 32
Bit 5 = 0
Bit 4 = 8
Bit 3 = 4
Bit 2 = 0
Bit 1 = 1

Take out the zeros and add together all the decimal values of the on bits to the the value of the byte
in decimal => 01101101 = 64 + 32 + 8 + 4 + 1 = 109 … Easy!

Let's try another example.

10111001

First, create a table (do this until you are comfortable working with binary numbers).

Switch
On = 1
Off = 0

1 0 1 1 1 0 0 1

Bit Position 8 7 6 5 4 3 2 1

Bit Value in decimal 128 64 32 16 8 4 2 1

Now highlight all the on bits and ignore the off bits:

Switch

On = 1
Off = 0

1 0 1 1 1 0 0 1

Bit Position 8 7 6 5 4 3 2 1

Bit Value in decimal 128 64 32 16 8 4 2 1

10111001 = 128 + 32 + 16 + 8 + 1

Bit 8 = 128
Bit 7 = 0
Bit 6 = 32
Bit 5 = 16
Bit 4 = 8
Bit 3 = 0
Bit 2 = 0
Bit 1 = 1

Take out the zeros and add together all the decimal values of the on bits to the the value of the byte
in decimal => 10111001 = 128 + 32 + 16 + 8 + 1 = 185

Binary to Decimal (in bytes)

1. Write out positional powers of 2 in a table (e.g. 128, 64, 32, 16, 8, 4, 2, 1)
2. Fill in the table above with 1’s & 0’s
3. Add the positional values wherever there is a 1

Here are a few for you to practice on! (i.e. what are the decimal values of the following?)

1. 11110111
2. 00010010
3. 10101010
4. 11111111
5. 11001100

Solutions – Highlight from here on and change the font to black. The font is presently white
thus invisible. To do this hold down the shift key and scroll down the page using the down
arrow key, then go up to Format and Font and change the color.

1. 11110111  247
2. 00010010  18
3. 10101010  170
4. 11111111  255
5. 11001100  204

Food for thought – You are a system administrator and you suspect two of your employees are
involved with corporate espionage. You are asked by the CEO to read their emails. Would
you have caught this simple method of hiding messages?

Decimal to Binary Conversion

There are 2 different algorithms to convert from decimal to binary. The easier one in my
opinion is by inspection. Please review the segment above on Determining a Decimal
Number’s Value above as we will use the same approach or algorithm.

Let's look at a simple example – Decimal 19

(Could also be represented as 0d 19 => 0d before the 19 means number is in decimal)

I have copied the binary positional chart below for convenience along with an extra row to hold
the binary equivalent of decimal 19 (i.e. 0d 19) Also by convention we will represent in 8 bits
or 1 byte.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 0 1 0 0 1 1

6. By inspection we see the LCD of 19 is 16 therefore I put a one in the 16s place and

zeros in the 128, 64 and 32 places.
7. 19 – 16 = 3 thus I continue looking for the next LCD for the number 3 assigning zeros to

positions greater than 3.
8. I find the LCD for 3 is 2 and therefore write down a 1
9. 3 – 2 = 1 thus I continue looking for the next LCD for the number 1 which is obviously

one and we are done.

Let’s check our work, we have 0b 00010011
(preceding 00010011 with 0b means it is in binary)

 0 x 128 = 0
+ 0 x 64 = 0
+ 0 x 32 = 0
+ 1 x 16 = 16
+ 0 x 8 = 0
+ 0 x 4 = 0
+ 1 x 2 = 2
+ 1 x 2 = 1

Another detailed example is given in Appendix A

Binary to Decimal (in bytes)

1. Write out positional powers of 2 in a table (e.g. 128, 64, 32, 16, 8, 4, 2, 1)
2. Fill in the table above with 1’s & 0’s
3. Add the positional values wherever there is a 1

Hexadecimal

Basically, the only reason we have hexadecimal is that humans are terrible using binary (long
strings of 1s and 0s). Hexadecimal provides a quick and convenient way to express binary
numbers as they are represented on computers (i.e. bytes). Hexadecimal has 16 digits. The
decimal system only has 10 digits thus we must use 6 other characters for the additional
Hexadecimal digits. We use A, B, C, C, E, F to represent decimal 10, 11, 12, 13, 14, 15
respectively. See the correspondence in the table below.

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

10000 16 10

 Also, compare the positional tables of Binary, Hexadecimal and Decimal

Binary Positional Table

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Hexadecimal Positional Table
(note 24 = 161 and 28 = 162 and …)

163 162 161 160

 4096 256 16 1

Decimal Positional Table

103 102 101 100

 1000 100 10 1

Binary & Hexadecimal Conversion

Once I have either Binary or Hexadecimal I create a table to convert every 4 bits into their
equivalent Hex digit or vice versa (i.e. 1 hex digit into 4 bits).

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 A B C D E F

Example 01100101 (from above)

1. Separate each byte into 2 groups of 4 bits

  0110 0101 (also represented as 0b 0110 0101 which indicates it is binary)

2. Find the corresponding hex digit in table above for each 4 bits.

 0110  6
 0101  5
  Hex 65 (also represented as 0x65)

Let’s check/verify our Hex 65 result. Our Algorithm is:

To convert each numbering system to decimal, each bit/hex digit is multiplied by its positional
value (an increasing power of the base). The power of the base increases by one for every
digit moved to the left.
Our number is:

Power of 16 162 161 160

Positional Value 256 16 1

Our number 0 6 5

Thus we have:

 0 x 256  0
 + 6 x 16  96
 + 5 x 1  5
 101 decimal

Now we have 3 numbering systems and need a way to disambiguate them. We do this by preceding
the number with 0d for decimal, 0b of binary and 0x for hexadecimal

Convert the following to Binary and Hexadecimal

0d 45 0b00101101 0x2d

0d 131 0b10000011 0x83

 0d 257 (Note that we always represent binary/hexadecimal numbers in a full Byte.
0b100000001 0x101

Convert the following to Decimal

0x 37 0d55

0x AB 0d171

0b 10111011 0d187

Solutions are whited out above (Highlight the area and change the font color)

Appendix A
Decimal to Binary Conversion

Algorithm Decimal to Another Base by Inspection from above

 Start:

1. Find the largest common denominator(LCD) in desired base for decimal number (Use
the Positional Tables below as necessary)

2. Note place 0s in result positions where number cannot be divided (positional place is
not LCD)

3. Divide this decimal number by the largest common denominator and record result in
corresponding position

4. Save remainder

 5. Take remainder and use as new decimal number

 6. If new decimal number is not 0

Then Goto Start

Binary Positional Table

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Hexadecimal Positional Table

163 162 161 160

 4096 256 16 1

Decimal Positional Table

103 102 101 100

 1000 100 10 1

Convert the following to Binary and Hexadecimal

0d 101 (0d means decimal 101 – (One Hundred One))

I created a table to help me with the powers of 2 as well as keep track of my progress and data
storage. I will step through the conversion of 0d 101 using the  to indicate deduced result
of each step.

Positions 128 64 32 16 8 4 2 1

Result

Remainder

Num to Subtract

1. Find the largest common denominator in desired base for decimal number (or remainder)

 I compare the value of 101 with the powers of 2

  Largest common denominator for 101 is 64 since 128 > 101 > 64

2. Place 0s in result positions where number cannot be divided

 101 cannot be divided (Integer Division) by 128 so I place a 0 in the 128 bit position

Positions 128 64 32 16 8 4 2 1

Result 0

Remainder

Num to Subtract

3. Divide this decimal number by the largest common denominator and record result moving
left to right

 101 / 64  result is 1 in 64 place

Positions 128 64 32 16 8 4 2 1

Result 0 1

Remainder 37

Num to Subtract 64

4. Subtract this number from the decimal number (if necessary) and record remainder (in
binary this is already done)

 101 – 64  37

5. Take remainder and use as new decimal number

 Use 37 as new decimal number

6. If new decimal number is not 0

Then Goto Start (1)

My new decimal number is now 37 and I am here:

Positions 128 64 32 16 8 4 2 1

Result 0 1

Remainder 37

Num to Subtract 64

1. Find the largest common denominator in desired base for decimal number (or remainder)

  32 since 37 > 32

2. Note place 0s in result positions where number cannot be divided

  not necessary

3. Divide this decimal number by the largest common denominator and record result in
corresponding position

 37 / 32  1 with remainder of 5

Positions 128 64 32 16 8 4 2 1

Result 0 1 1

Remainder 37 5

Num to Subtract 64 32

4. Subtract this number (positional value) from the decimal number and record remainder (in
binary this is already done as the remainder is this number)

  Already done in Binary

5. Take remainder and use as new decimal number

 new decimal number is 5

6. If new decimal number is not 0

Then Goto Start

 it is not 0 , it is 5 goto start

From previous page I Start with Decimal number is 5

Positions 128 64 32 16 8 4 2 1

Result 0 1 1

Remainder 37 5

Num to Subtract 64 32

1. Find the largest common denominator in desired base for decimal number (or remainder)
(Use the Positional Tables below as necessary)

  4 since 16 > 8 > 5 > 4

2. Note place 0s in result positions where number cannot be divided

  0s placed in 16s and 8s place

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0

Remainder 37 5

Num to Subtract 64 32

3. Divide this decimal number by the largest common denominator and record result in
corresponding position

 5 / 4  1 with remainder 1

4. Subtract this number (positional value) from the decimal number and record remainder (in

binary this is already done as the remainder is this number)

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0 1

Remainder 37 5 1

Num to Subtract 64 32 4

5. Take remainder and use as new decimal number

  1

6. If new decimal number is not 0

Then Goto Start

Decimal number is 1 thus not 0 so Goto Start

Continuing on - we Start with decimal number = 1

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0 1

Remainder 37 5 1

Num to Subtract 64 32 4

1. Find the largest common denominator in desired base for decimal number (or remainder)
(Use the Positional Tables below as necessary)

  1 because 2 > 1

2. Note place 0s in result positions where number cannot be divided

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0 1 0

Remainder 37 5 1

Num to Subtract 64 32 4

3. Divide this decimal number by the largest common denominator and record result in
corresponding position

 1 / 1 = 1 with remainder = 0

4. Subtract this number (positional value) from the decimal number and record remainder (in
binary this is already done as the remainder is this number)

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0 1 0 1

Remainder 37 5 1 0

Num to Subtract 64 32 4

5. Take remainder and use as new decimal number

 new decimal number is 0

6. If new decimal number is not 0

Then Goto Start

 It is 0 thus we are done.

Let’s check our work and using the result:

Positions 128 64 32 16 8 4 2 1

Result 0 1 1 0 0 1 0 1

Remainder 37 5 1 0

Num to Subtract 64 32 4

Our Algorithm is:
To convert each numbering system to decimal, each bit/hex digit is multiplied by its positional value
(an increasing power of the base). The power of the base increases by one for every digit moved to
the left.

By inspection I see the binary number 01100101 I use the table above to determine the decimal
value.

 0 x 128  0
 +1 x 64  64
 +1 x 32  32
 +0 x 16  0
 +0 x 8  0
 +1 x 4  4
 +0 x 2  0
 +1 x 1  1

Now binary is easy and by inspection I only look at the positions that have the value 1 since 0 times
anything is 0 thus: 64 + 32 + 4 + 1

Binary & Hexadecimal

Once I have either Binary or Hexadecimal I create a table to convert every 4 bits into their equivalent
Hex digit or vice versa (i.e. 1 hex digit into 4 bits)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 A B C D E F

Example 01100101 (from above)

1. Separate number into 2 groups of 4 bits

  0110 0101 (also represented as 0b0110 0101)

2. Find the corresponding hex digit in table above for each 4 bits.

 0110  6
 0101  5
  Hex 65 (also represented as 0x65)

Lastly, let’s check/verify our Hex 65 result. Our Algorithm is:

To convert each numbering system to decimal, each bit/hex digit is multiplied by its positional value
(an increasing power of the base). The power of the base increases by one for every digit moved to
the left.

Our number is:

Power of 16 162 161 160

Positional Value 256 16 1

Our number 0 6 5

Thus we have:

 0 x 256  0
 + 6 x 16  96
 + 5 x 1  5
 101 decimal

Conversions Algorithms in a Nutshell

Decimal to Binary (in bytes – max value 255)

1. Write out positional powers of 2 in a table (e.g. 128, 64, 32, 16, 8, 4, 2, 1)
2. Find the largest common denominator (LCD moving left to right)
3. Write a 1 in the LCD
4. Subtract the LCD and continue moving L - > R (step 2) repeating until done

Binary to Decimal (in bytes)

4. Write out positional powers of 2 in a table (e.g. 128, 64, 32, 16, 8, 4, 2, 1)
5. Fill in the table above with 1’s & 0’s
6. Add the positional values wherever there is a 1

Binary to Hexadecimal and vice versa

1. Create a binary hexadecimal/binary conversion table by:
a. Count to 15 in binary
b. Count to 15 in hexadecimal alongside the binary

2. Convert every 4 bits into hexadecimal or every hexadecimal number into 4 bits usint the

