

How to Approach  
 Binary File Format Analysis

Essential knowledge for reverse engineering

Andreas Pehnack
Summer 2015

Copyright

Copyright © 2015 by Andreas Pehnack (andreas@synalysis.com). All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the author, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA, 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com.

Requests to the author for permission should be addressed to Andreas Pehnack, PO Box 803338
#62838, Chicago IL 60680-3338, USA or online at andreas@synalysis.com.

Limit of Liability/Disclaimer of Warranty: While the author has used his best efforts in
preparing the book, he makes no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose.

No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult
with a professional where appropriate. The author shall not be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential , or
other damages.

Visit https://hexinator.com if you work on Windows or Linux  
to get a professional tool for binary file analysis.

If you’re working on a Mac (OS X), check out Synalyze It!  
on https://www.synalysis.net

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !2

mailto:andreas@synalysis.com
http://www.copyright.com
mailto:andreas@synalysis.com
https://hexinator.com
https://www.synalysis.net

Binary File Format Analysis
Get the habit of analysis - analysis will in time enable synthesis to

become your habit of mind.
Frank Lloyd Wright

Why analyze Binary File Formats?
There are plenty of reasons why you could care about all the bits and bytes in
binary files. Almost all files the average computer user reads and writes with
applications like word processors, audio recorders, or video editing software, are
binary files. However, computer specialists often need to dig deeper and want to
extract, modify or simply understand the contents of such files.

Digital forensics experts often have to identify traces of suspicious activities in
binary files.

Malware analysts need to dissect not only executable files in order to fully
understand malicious software.

Broken files like interrupted audio or video recordings often can only be recovered
with in-depth knowledge of the structure of these files.

Programmers of software that writes and reads binary files require a good
understanding of how their data structures are represented in a file format. If
something goes wrong a manual analysis of output files can be necessary.

Finally, reverse engineering and analysis of binary files can simply be fun and lets
you for example modify high scores in saved games.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !3

What will you get out of this book?
You will learn
• basics of binary file formats
• common patterns found in many different formats
• how to approach completely unknown file formats

It’s helpful if you already know
• fundamentals of computer science like what a bit or byte is
• a programming language like C or Python

If you’re already familiar with the fundamentals of binary file formats you can skip
the first two chapters.

This book cares mainly about analysis of data files; information on how to decode
executable file formats like PE (Portable Executable, Windows), MACH-O (Mac) or
ELF (Linux) can be found at various places in the Internet.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !4

Basics
Simple solutions seldom are. It takes a very unusual mind to

undertake analysis of the obvious.
Alfred North Whitehead

Introduction
Whatever information some application software wants to make persistent in a file
has to have some well-defined representation. And all these information have to be
written according to some rules in order to allow reading the data back to memory.

For you this means that analysis of a binary file is mainly about understanding file
structure and the meaning of certain information.

While binary files primarily consist of bytes, on file format level you mainly find
text and numbers, often organized in structures. Learn here about the atoms, later
we’ll combine them to molecules.

Text Strings

Character Encoding
Since computers only know how to process numbers, characters have to be mapped
to some numeric representation. This assignment is also called text encoding. The
most encodings are based on US-ASCII with its 128 definitions (7 bits). In order to
store text of languages like French or Russian so-called code pages were invented
which consume the second 128 mappings of a byte.

Later Unicode was born which defines more than 120,000 characters. Additionally
it allows to switch reading direction for languages like Hebrew or Arabic. Be aware
that there are different ways Unicode text can be represented in a file. A very
common one is UTF-8 that consumes up to 6 bytes per character but also UTF-16
can be found in different file formats.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !5

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16

File formats which have their origins in the IBM world often use EBCDIC encoded
text. EBCDIC doesn’t define the characters in consecutive order like ASCII which
often causes software to fail when compiled on EBCDIC-based machines.

Storage
Apart from different character encodings there are some common ways how the
text length is defined in a file. In many cases the representation in a file equals the
storage in main memory.

Fixed Length
In many file formats the maximum length of strings is fixed. Typically the
remaining space after the text to be stored is filled with zero bytes.

String with length 22 and 16 characters

Zero terminated
Since C is a very popular programming language for more than 40 years many file
formats contain strings as they are stored in main memory by software developed in
C. The end of such strings is marked with a single zero byte or two zero bytes for
double-byte character encodings.

String with length 17 and 16 characters

Pascal
Programming languages like Pascal, Modula or Delphi store the string length in the
first byte of a string. Accordingly strings in file formats written by such software
often follows the same convention. The first byte of a string contains the number of
characters that follow.

Pascal string with number of following characters in the first byte

S o m e s a m p l e t e x t \0 \0 \0 \0 \0 \0

S o m e s a m p l e t e x t \0

16 S o m e s a m p l e t e x t

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !6

https://en.wikipedia.org/wiki/EBCDIC
https://en.wikipedia.org/wiki/C_(programming_language)

Numbers
While text strings play a significant role in binary files numbers are even more
important. They are not only used to represent raw countable entities but can also
stand for enumerations or masks.

Byte Order (Endianness)
A concept you definitely need to know when dealing with binary file formats is
endianness. The term is related to the story of Gulliver’s Travels written by
Jonathan Swift.

For our purposes you simply have to keep in mind that the order of the bytes of
numbers are reversed in some file formats (Little Endian). This is mainly the case in
formats generated on computers with Intel processors.
Be aware that this normally doesn’t play a role when programming in a higher-level
language. However, if you look at a memory dump of number variables you notice
the inverse byte order.
There are some file formats like TIFF which which can contain either little or big
endian numbers, depending on some indicator in the file.

Example for a 32 bit / 4 byte number:

Important: the byte order is reversed, not the bit order!

Byte Order \ Number 0x12345678 (decimal 305419896) 0x87654321 (decimal 2271560481)

Big Endian

Little Endian

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !7

12 34 56 78
78 56 34 12

87 65 43 21
21 43 65 87

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Gulliver%27s_Travels
https://en.wikipedia.org/wiki/Jonathan_Swift

Integer numbers
There are basically two distinctions you have to make when dealing with an integer
number: its size and whether it is signed or unsigned.
Typical integer sizes are 1, 2, 4 and 8 bytes. Formats aiming to minimize file sizes
often contain numbers with arbitrary bit sizes.

Offsets
In binary file formats you’ll often find numbers which are interpreted as file offsets.
This can be considered a pointer to a certain position in a file where parsing should
continue.
There are both absolute and relative offsets. Absolute means that the offset is based
on the start of the file. Relative offsets are added to some other position in the file.

Floating-point numbers
In order to allow to represent very small and very large figures, floating point
numbers were invented. Almost always they conform to the IEEE 754 standard,
mostly with sizes 4 or 8 bytes. Half precision floats (2 bytes) or quadruple precision
floats (16 bytes) are a rare species in binary files.

Flags
Flags are generally used to indicate if some “feature” is on or off. On file level this
means that one bit represents the flag’s value (zero means off/false, one means on/
true). Often multiple related flags are combined in a number value.
Example of window style flags in Windows:
Name Mask (hexadecimal) Description

WS_EX_ACCEPTFILES 0x00000010 The window accepts drag-drop files.

WS_EX_CLIENTEDGE 0x00000200 The window has a border with a sunken edge.

WS_EX_CONTEXTHELP 0x00000400 The title bar of the window includes a question
mark.

WS_EX_APPWINDOW 0x00040000 Forces a top-level window onto the taskbar when the
window is visible.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !8

https://en.wikipedia.org/wiki/Signedness
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Flag_field

In order to test if a flag bit in a number is zero or one, masks are used. A mask is a
number that has the bit(s) set you want to test. If a binary AND operation of the
mask and the value results in a value larger than zero, the flag is set.

Mask values can also be used to set single bits in a number. Simply perform a
binary OR operation of the mask and the value.

Structures
In programming languages structures are named collections of elements like
numbers, strings or other objects. On file level things look a bit different. Since
there is no independent name tag structures have to be identified by position or
some element inside the structure.

Flag Mask (binary) Mask (hexadecimal) Mask (decimal)

1 00000001 0x01 1 = 20

2 00000010 0x02 2 = 21

3 00000100 0x04 4 = 22

4 00001000 0x08 8 = 23

5 00010000 0x10 16 = 24

6 00100000 0x20 32 = 25

7 01000000 0x40 64 = 26

8 10000000 0x80 128 = 27

Value (binary) Mask (binary) AND result OR result

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !9

Alignment / Padding
In programming languages like C, the elements of structures are aligned by default
to byte positions which are multiple of 2, 4, 8, or 16 depending on the processor
structure. Similarly, in file formats structures or elements of structures are
sometimes aligned to multiple of 2 or 4 bytes.
Structure alignment can be found for example in IFF85 or TrueType file formats.
Usually the padding area before some aligned structure is filled with 0x00 bytes.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !10

https://en.wikipedia.org/wiki/Data_structure_alignment
http://www.apple.com
https://en.wikipedia.org/wiki/TrueType

Binary File Formats
The greatest moments are those when you see the result pop up in a
graph or in your statistics analysis - that moment you realise you

know something no one else does and you get the pleasure of thinking
about how to tell them.

Emily Oster

Typical Patterns
When looking at a bunch of binary file formats many of them share some basic
concepts.
Always keep in mind that
• there is some order in which the file contents are read
• the more flexible a file format the more hints there are how to read it

The simplest possible file format contains only elements (numbers, strings, …) at
fixed file positions. If there is for example an optional element there must be
additional information in the file that indicates if the element is to be read or not.

Likewise for alternative structures — somewhere inside or outside of the structures
there must be some hint which structure should be read.

Eye Catchers/Magic Numbers
In order to identify a file type not only by its file name extension many file formats
start with a unique byte sequence. The UNIX file command is able to detect the
format of files mostly depending on magic numbers.
Format Text (ASCII) Bytes

GIF “GIF89a” 47 49 46 38 39 61

PDF “%PDF” 25 50 44 46

ZIP “PK” 50 4B

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !11

https://en.wikipedia.org/wiki/File_(command)

File Headers
Most binary file formats start with some structure called file header. Depending on
the specification a magic number may be part of the the header or is followed by
the header.
Typical contents of file headers are version numbers, file offsets of other structures
in the file, image width and height, or in general information necessary in order to
read the rest of the file.
In some file formats where the writing software doesn’t always know in advance
what will be written to a file some structure can be found at the end of the file
allows accessing the file contents. Examples are ZIP or PDF.

Structure Lengths
Depending on the data some structure comprises it may have a fixed or variable
byte length.
Structure length types:

Alternative Structures
Let’s say a hypothetical file format can store structures for points, lines and triangles
in any order. Apart from the raw coordinates the reading program must get some
hint which object to read next.

Structure Length Description

Fixed The length is not mentioned in the file but known by the reading application

Length element Inside or outside of the structure (e. g. in the file header) the length of the structure is
stored in a number element

Delimiter The structure itself or elements of it are continued until a certain byte sequence. Typical
example of this case are zero-terminated strings.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !12

x1, y1, x2, y2, x3, y3 x1, y1, x2, y2 x1, y1, x2, y2, x3, y3

x1, y1 x1, y1, x2, y2, x3, y3 x1, y1, x2, y2 x1, y1

A binary representation of the data could look like this (assuming that every
number fits into one byte):

In this case additional lengths of the structures is not necessary — a triangle always
consists of three and a line of two points.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 03 x1 y1 x2 y2 x3 y3 02 x1 y1 x2 y2 03 x1 y1 x2

1 y2 x3 y3 01 x1 y1 03 x1 y1 x2 y2 x3 y3 02 02 x1

2 y1 x2 y2 01 x1 y1

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !13

Unknown Formats
My mind rebels at stagnation. Give me problems, give me work, give
me the most abstruse cryptogram, or the most intricate analysis, and I

am in my own proper atmosphere. But I abhor the dull routine of
existence. I crave for mental exaltation.

Arthur Conan Doyle

How to Start
Let’s assume you want to decode a binary file and have no specification. Here I
propose some simple steps you can take to learn more about such a file. So far the
human brain is still one of the best instruments to detect patterns and make sense
of them.

Histogram
A handy tool to learn more about the characteristics of a file is the histogram. It
basically shows how often each byte value (0-255) appears in a file.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !14

https://en.wikipedia.org/wiki/Histogram

What can a histogram tell you about a file? First, a very equal distribution of the
byte counts indicates that the file is compressed or encrypted. Second, single peaks
are hints which bytes play an important role in the file format. Often you can
ignore a peak of 0x00 bytes because most strings or other data is padded with
them.

Strings
Another useful tool that gives an impression of how a file is structured is strings. You
can use the command-line version on Unix or a GUI tool like Hexinator or
Synalyze It!

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !15

Sections
Many file formats consist of different sections. Mostly you can identify them by
scrolling quickly through a file in a hex editor and looking at the text column.

There are three possible ways these sections can be read by the application who
“knows” the file format:
• The sections start at fixed positions which are always the same in all files of that

format
• File offsets refer to the section starts, often stored in the file header
• The length of all preceding sections is known

If you write down the start positions and lengths of all sections you can visually
identify you can try to find this information later at other places in the file.

File Header
Since most file formats contain some kind of header that marks the starting point
for decoding the rest of the file here is a good place to search for the file offsets you
noted previously. Mostly file offsets are stored as 4-byte numbers, in newer formats
the numbers may also take 8 bytes.
Also try to identify other information you know it’s stored in the file. For example,
if you know that the file contains an image of a certain width and height, try to
find these values. Be aware that numbers may be stored in reverse byte order (little
endian).

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !16

Structures
If you take a closer look at a section in a file you may notice that it consists of a
series of similar structures. Often these structures follow some simple schema and
start with an identifier and some length field that holds the structure length in bytes.
In some cases there’s only an identifier of the structure type and the length is not
mentioned explicitly because that type of structure always has the same length.

Sometimes the length field contains the length of the whole structure, sometimes
only of the following data so don’t look for exact numbers.

Here’s how you can easily determine the size of fixed-length structures: With a hex
editor that allows to set an arbitrary number of columns simply change the column
count until similar patterns in the hex or text view are aligned vertically.

Now you can easily read the structure length from the headline of the hex view.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !17

Structure
Type

Structure
Length Data

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !18

How to Start?
An absolute can only be given in an intuition, while all the rest has to

do with analysis.
Henri Bergson

Now after you learned the basics of binary file formats you probably want to
explore some real file. There are some tutorials that guide you step by step through
the analysis of some files:
https://www.synalysis.net/tutorial-decode-a-png-file.html
https://hexinator.com/tutorial-decode-adobe-swatch-exchange-file/

Evaluation copies of the software used in the tutorials can be downloaded for free
on these web sites:
https://hexinator.com (Windows, Linux) and  
https://www.synalysis.net/ (OS X).

Feedback
If you want to give any feedback regarding this small book, please send an email to
andreas@synalysis.com and let me know what you think.

HOW TO APPROACH BINARY FILE FORMAT ANALYSIS !19

https://www.synalysis.net/tutorial-decode-a-png-file.html
https://hexinator.com/tutorial-decode-adobe-swatch-exchange-file/
https://hexinator.com
https://www.synalysis.net/
mailto:andreas@synalysis.com

