Understanding
Computers

Programming

VonNeumann Architecture

— CPU, Memory, Storage

— Input, processing, output (IPO) cycle (text adds storage => IPOS)

— Stored program => becomes dynamic process in execution
e Process has resources allocated by OS (CPU, Files, Internet Connections, Printers, etc.)
e Process memory has Code, Data, Stack segments

Syntax & Semantics
— Syntax - words, symbols, and codes used to write computer programs

— Semantics — rules & logic

Variables => named symbols in memory

recall we must abstract and represent our real world in a computer

Boolean values => truth values (often determined in test)

— 3>2istrue.. ifx=3..x>2is true

Programming Language Evolution

* Generations
— 1%t Gen — Machine Language
— 2" Gen — Assembly Language
— 34 Gen — High Level
— 4th Gen — Declarative/SQL*
* Note this is speculation

Low Level Languages (15t/2"9 Gen)

— Low-Level Languages (earliest programming languages)
e 1st Gen - Machine language
— Written at a very low level, just using 1s and Os
e 2"d Gen - Assembly language

— Includes some names and other symbols to replace
some of the 1s and Os in machine language

— 1 to 1 mapping of assembly instructions to machine
instructions

— Machine dependent
» Written for one specific type of computer

Assembly Language

Memory address for SUM MACHINE LANGUAGE
Memory address for register 0 ~ | Machine language instructions are typically in binary form, and the
[I | memory address locations, as well as the instructions themselves,
ADD operation code fea7e 0010007001002 need to be specified. The highlighted machine language instructions

shown to the left correspond to the highlighted assembly language

005337"001004|_ statements below.

DEC operation code—1

000000, —
Memory address for CNTR FIGURE 13-17

END operation code Assembly and

machine language.

Operation codes

Labels | Operands Comments
ASSEMBLY
LANGUAGE .TITLE SUM TWO NPMBERS
Assembly language .ENABL AMA ; Enable absolute memory addressing
instructions use .GLOBL RNUM, PNUM : Subroutines to be used
mnemonic operating .MCALL .TTYIN, |.fTYOUT, .EXIT ; System library macros to be used
codes to make the L
instructions much START: MOV #2,CNTR ; Initialize counter to 2
easier to understand. MoV #0,SUM : Initialize sum to 0
Note that data must
still be moved in and LOOP: JSR PC, RNUM ; Jump to subroutine RNUM to input number
out through the ADD %0,SUM ; Add inputted number (in register 0) to sum
registers (registero DEC CNTR 1 ; Decrement counter
in this example). BNE LOOP ; Repeat loop if counter is not equal to 0
MoV SUM, %0 ; Move sum to register 0
JSR PC,PNUM ; Jump to subroutine PNUM to print sum
.EXIT (in register 0)
CNTR: .BLEW 1 ; Reserve 1 word of memory space for CNTR g
SUM: - BLKW 1 ; Reserve 1 word of memory space for SUM)
.END START — ; End of program g
®

High Level Languages

— High-Level/3' Generation Languages
e Closer to natural languages

 Machine independent (portable)
* Also visual or graphical languages
— Use graphical interface to create programs any
paradigm
— Designed for educational/project mgmt. purposes

High Level Programming Paradigms

A paradigm is a model

To write a program, appropriate software for the
application/programming language to be used is needed

4 Programming Paradigms =>

— Procedural/Structured (we’ll look at these first)
e Cobol, C, Fortran

— Object Oriented
e Java, Python, C++/CH
* Note OOP has procedural constructs

— Logical/Declarative => Prolog

— Functional => Lisp

Procedural/Structured
Control Structures

e Control Structure (Structured Programming)

— A pattern for controlling the flow of logic in a computer
program, module, or method

e 3 Control Structures
— Sequential execution (default)
— Selection execution (Boolean decision structure)
— Repetition/Iteration execution (has Boolean decision structure)
e repeated actions based on decision structure

* 4th _ Sub-programs (e.g. functions/procedures/methods/etc.)

e See Truth Tables in ciss100.com => Programming (both handouts
and video)

Sequential Execution

e The Sequence Control Structure

— Series of statements that
follow one another

— Default execution path

Ex. Statements:

X=X+2;

y=X;

*Note diagram blocks have single
entry and exit

Entry

!

Statement 1

¢

Statement 2

;

Statement 3

l

Exit

SEQUENCE

FIGURE 13-7

Selection

e The Selection Control Structure

— Multiple paths, exit direction depends on result of a certain
condition (logical determination of truth value)

» |f-then-else (Can be just if-then)
if (X >2) (x>2is Boolean and has a truth value)
then perform some action
else perform a different action
— Case control structure (switch)

» Allows for as many possible results of the specified
condition as needed

10

Repetition

Repetition Control Structure (lteration or Loops)
— Repeat series of steps based on decision structure

» While/For (Boolean test at entry)
» Whilex >0
» Loop may never be entered

» Do-while/Repeat-Until (test at exit)
» While/Until statement is last statement in loop
» Loop always executed once

» 3 parts of loop

» Initialization (outside of loop or in For statement)

» Test

» Body

» Update

11

Structured Programming Control

Structures

False
(N

Do While

REPETITION

FIGURE 13-7

The three
fundamental control
structures. Mote that
each structure has only
one antry point and
only one exit paint.

12

& Cenage Leaming

Procedural Programming

 Procedural Programming
— Design where program separated into small
modules/procedures

e Procedure called by main program or another
* Allows each procedure to be performed as many times as
needed; multiple copies of code not needed
* Top Down
— Decomposition
— Stepwise refinement to solve problem

* Bottom Up

— Library Development
— Tool kits

13

Top Down Decomposition

FIGURE 13-1
Structured
programming.
A structured program
Modules are arranged hierarchically The control program calls each is divided into individual
in a top-down fashion, as illustrated module as needed, such as when modules; each moduls
L Control e)
here for a payroll application. it is time to compute the deductions. represants avery
program specific processing
‘ task. h
Input Gross Pay Deductions Net Pay Output
Each module . . E
then calls further ~ Compute Compute Compute Compute Issue Print 5
modules, as federal state retirement other checks payroll N
needed, such as to taxes taxes contribution deductions report g
compute federal taxes. —— ass——— s——— A am——— I ©

| Structured High Level Language Ex => Cobol

— COBOL

Designed for business transaction processing

Makes extensive use of modules

Strength lies in batch processing and its stability
 Programs are lengthy and take a long time to write
e Considered to be outdated by some

 New versions are evolving
— COBOL.NET

15

Cobol(3 Gen)

Comments are preceded
by an asterisk.

Most COBOL programs use — |
a number of modules to
break the program into
manageable pieces. These
submodules are called
from the main control
module using these
statements.

Three submaodules are
used in this program.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 RESULT PIC 9(3) VALUE ZERO.
01 CNTR PIC 9(1) VALUE ZERO.
01 NUM PIC 9(2) VALUE ZERO.

Ekkkhkkkkkhhkkkkhkk
PROCEDURE DIVISION.
Ehkkhkkkkkhhkkkkhkk

PERFORM InitVariables

PERFORM GetNumber UNTIL CNTR = 2
ERFORM PrintSum

STOP RUN.

kdkkkhkhkhhkhhkd kb b ki
InitVariables.
khkhkhhkhh bkt ekt hddk

* This module initializes the RESULT and CNTR variables to 0.
MOVE 0 TO RESULT
MOVE Q0 TO CNTR.

*End of InitVariables

_kkkkhhkkkhhhhkhkh kR hhk
GetNumber ,
khkkhkhkhkhkhhkhhkhhh ki
* This module inputs a number, adds it to the result, and
* increments the counter.
DISPLAY "Enter Number: " WITH NO ADVANCING
ACCEPT NUM
COMPUTE RESULT = RESULT + NUM
COMPUTE CNTR = CNTR + 1.

*End of GetNumber module.

—kdkkkkkdkkkok ok ko k ok ok ok
PrintSum.
khkkhkhkhkdkhkhhkh kb k ki
* This module prints the final RESULT. :
DISPLAY "The sum of the numbers you entered is " RESULT.

| *End of PrintSum module.

FIGURE 13-20

The adding-two-
numbers program
written in COBOL

16

| Structured High Level Language Ex => C (C, C++)

— C, C++, and CH#

e C

— Much closer to assembly language than other high-
level languages

— Designed for system programming

o C++
— Object-oriented versions of C
— Very popular for graphical applications

e C# (Csharp)

— Used to create Web applications and XML-based
Web services

e Objective-C:
— For iPhone and other Apple applications (dated)
=> Now Swift which can be integrated w/Obj-C

17

C++

Comments are
preceded by two —
slashes //.

The instructions in a
function or loop are <]
enclosed in { } braces.

$#include <iostream.h>

void main ()

{

- // Declare and initialize wvariables
float fSum = 0;

float fNum;

int iCntr = 0;

// Input a number, add it to the sum, and repeat
// until two numbers have been entered
do

{
#fff##”’HCDut << "Enter number: "; // Prompt for input
cin >> fNum;

fsum = f£Sum + fNum:;
iCntr = iCntr + 1;
}

while(iCntr < 2);

// Print the sum
cout << "The sum of the numbers you entered is "

M
FIGURE 13-22
The adding-two-
numbers program
written in C++.
<< fSum;
w

18

| Object Oriented Design

e Object-Oriented Programming (OOP & OOD)

— Programs consist of a collection of objects that
contain data and methods to be used with that data
(uses procedural constructs within OOP)

e Class

—Group of objects that share some common
properties

 |Instance/Object
—An individual object in a class

19

Approaches to Design and
Development

e Attributes/Data => state of an object

 Behaviors/Methods => Perform actions on an object
e UML below introduced in Sys Analysis chapter

BUTTON —— Class name FIGURE 182

Button objects.
This class diagram

ButtonColor illustrates that each
ButtonSize object in the Button
. ‘ — Attributes class has four
Di Sp IayCoo rdinates - attributes to hold data
ButtonText = about the currant state
§ of the button and thresa
Dis P Iay @ mathods to react to
@© meanas tha obion
Hide — Methods £ e e o
Dim ©

20

| Object Oriented Design

e OOD & OO0OP

e Encapsulation
— Bundles data/methods to work on data within class
— Hides the internal representation/state=> Security
— Checking Acct Example

* Inheritance
— Derives & extends parent class to child class
— Supports code reuse

e Polymorphism
— Many forms => class can override parents methods

21

| OOD Example => Java

— Java
e High-level, object-oriented programming language
frequently used for Web-based applications

Contain Structured components
e Java programs are compiled into bytecode

e Can run on any computer that includes Java Virtual
Machine (Java VM)

Is one of the most popular programming languages
today

22

Java

The java.io package —__
will handle the user

input; * indicates all

classes will be available.

Comments within the
code are preceded by ~—__|
two slashes //.

The out attribute and
printin method in the

System class of the /

| ———import java.io.*;
public class AddTwo {
public static void main(String[] args) throws IOException {
BufferedReader stdin =
new BufferedReader (new InputStreamReader(System.in));

String inData;

int iSum = 0;

int iNum = 0;

int iCntr = 0;

——// Input a number, add it to the sum, and repeat
// until two numbers have been entered

do
{
System.out.println{"Enter number: ");
inData = stdin.readLine(); // get number in character form
iNum = Integer.parselnt(inData); // convert inData to integer
iSum = iSum + iNum;
iCntr = iCntr + 1;
}

while (iCntr < 2);

// Print the sum
["The sum of the numbers you entered is " + iSum);

}

java.io package are

results.

used to output the I

FIGURE 13-24

| £

The adding-two-
numbers program

- written in Java.

23

Programming Languages

— Fourth-Generation Languages (4GLs)
e Even closer to natural languages and easier to work
with than high-level

e Declarative rather than procedural

 Includes structured query language (SQL) used with
databases

24

The Program Development
Life Cycle (PDLC)

e Program Development

(application software %idgd = e = Wspé’éﬁ?cr:?;ns

development) — —

— The process of e ¥ 1T e |
creating - ﬂ “5
application complted | P
programs e | — | = |fsiaim

 Program Development .
Life Cycle (PDLC) C g " il

— The five phases Of ':E'Eﬂ'gzg-u l-!urrrg % Documented
program = | we Oomens
development cyete (PDLE), Exch

phasea of the program
devalopment life cycle
produces some type of
documentation o pass
on o the next phase.

25

PDLC - Analysis

 Problem Analysis

— The problem is considered and the program specifications
are developed

e Specifications developed during the PDLC are reviewed
by the systems analyst and the programmer (the
person who will code the program)

e Goalis to understand the functions the software must
perform

— Documentation: Program Specifications

e Result of the first phase of the PDLC outlining what the
program must do

26

PDLC - Design

* Program Design

— The program specifications are expanded into a complete
design of the new program

e Algorithm for the program is developed

e Careful planning and design of a computer program are
extremely important

27

PDLC — Design Tools

Program Design Tools
=> diagrams, tables, models and structure/hierarchy charts
e hierarchy chart depict organization of a program
=> top down design
* Flowcharts

— Show graphically, step-by-step, how a computer program will
process data

— Use special symbols and relational operators
— Can be drawn by hand or with flowcharting software
 Pseudocode

— Uses English-like statements to outline the logic of a
program rather than the flowchart’s graphical symbols

e Object Oriented Design — Unified Modeling Language

28

FLOWCHART OPERATORS
= Less than
Less than or
<= = equal to
= Gireater than
Gireater than
== =
- or equal to

= <> Mot equal to

[an Hotimare drotimanismar dawoan

FLOWCHART SOFTWARE

Can be ussd fo create and modify flowchars.

PDLC — Design Tools

& Cangege Lemming

FLOWCHART SYMBOLS

Startfatop Decision
program

Procassing I Connactor u

Input!
output Flowlina —_— |

FIGURE 13-4
A flowchart
exam ple.

29

PDLC — Design Tools

Start
counter = 0
Read a record
DO WHILE there are records to process
IF computer_ experience
TF cﬂmpany_aervice Z 5 years FIGURE 12-5
Print employee name Pseudocode.
Increment counter [heprenen = e
ELSE |n th; ;I-.:-'r;-: hlt i;1.
Next statement Figura 13-4,
END IF
ELSE
Next statement
END IF
Read another record
END DO
Print counter
Stop

30

e Unified Modeling
Language (UML)
Models

— Set of standard
notations for
creating business
models

— Widely used in
object-oriented
programs

— Includes class
diagrams and use-
case diagrams

CLASS

A group of objects that
share the same basic
properties. A class diagram
defines the attributes and
methods that all instances
in the class possess.

INSTANCES

BICYCLES

TypeofBike
BikeCategory
Size

Color
NumberofGears
CurrentGear

CurrentSpeed |

ChangeGear
ChangeSpeed
Accelerate
Brake

Stop
TurnRight
TurnLeft

PDLC — Object Oriented Design (OOD)

Class Name
— Attributes
FIGURE 12-6
Class diagrams.
This exampla shows
onae class and two
| Methods instancas of that class.

The specific objects in a o
class, such as Bike1 and
Bike2 in this example.

BIKE1: BICYCLES
TypeofBike = 'male’
BikeCategory = 'road'
Size = 26

Color = "red'
NumberofGears = 21
CurrentGear = 5
CurrentSpeed = 0

ChangeGear
Change Speed
Accelerate
Brake

Stop

TurnRight
TurnLeft

=

INHERITANGE

BIKE2: BICYCLES
TypeofBike = 'child'
BikeCategory = 'mountain’
Size = 20

Color = 'blue'
NumberofGears = 6
CurrentGear = 1
CurrentSpeed = 0

ChangeGear
ChangeSpeed
Accelerate
Brake

Stop

TurnRight
TurnLeft

© Cengage Learning

All instances of a class inherit all attributes and methads of the class. The values of the
attributes for each instance may be different from other instances.

31

PDLC — Design Tenets

— Good Program Design
e Essential
e Saves time
e Good Program Design Principles
— Be Specific
» All things the program must do or consider must
be specified
— Follow the One-Entry-Point/One-Exit-Point Rule
— No Infinite Loops or Logic Errors
» Infinite loop is a series of steps that repeat
forever

32

PDLC — Design Testing

— Program Design Testing
e Design should be tested to ensure logic is correct
— Desk check
— Trace tables
— Documentation: Design Specifications
e |llustrates the program needed to fulfill the program
requirements
e Expressed using structure charts, flowcharts,
pseudocode, and UML models
* Include any test data and results from desk checking

33

PDLC - Coding

e Program Coding
— The program code is written using a programming
language

— Choosing a Programming Language
 Suitability to the application
* |Integration with other programs

Standards for the company
 Programmer availability

Portability if being run on multiple platforms
 Development speed

34

| PDLC - Coding

— The Coding Process
e Coding Standards
—Rules designed to standardize programming
—Makes programs more readable and easier to
maintain
—Includes the proper use of comments to:

» |dentify the programmer and last
modification date

» Explain variables used in the program
» |dentify the main parts of the program

35

PDLC — Coding Standards

— Reusable code
e Pretested, error-free code segments that can be
used over and over again with minor modifications
e Can greatly reduce development time

— Documentation: Documented Source Code

 Program coding phase results in the program written in
the desired programming language

e Should include enough comments (internal
documentation) so that the source code is easy to
understand and update

36

COMMENTS

Comments are usually preceded by a
specific symbol (such as *, C,', # or//);
the symbol used depends on the
programming language being used.
Anything else in a comment

line is ignored by the computer

Comments at the top of a program should
identify the name and author of the program,
date written and last modified, purpose of the
program, and variables used in the program.

Comments in the main part of a program
should indicate what each section of the
program is doing. Blank comment lines can
also be used to space out the lines of code,
as needed for readability.

PDLC — Coding Example

Ahkkdhkhkhhkdhhdhbhhhdhhhbhrhbthbhbhbbhdhdbdhbhd bkt hddddhbddbthhhbhbhbh bbb hih

* This program inputs two numbers, computes their sum, *
* and displays the sum. *
* *
* Written by: Deborah Morley 3/12/12 *
kkkkhkhkhhkhkhkdbhbhkhhdhrhhhhthkhrhhhrkikhkhbhddhdhdhrdddhrhrdddhdrdrhhrbbdt kbt hkik
* Variable list *
* SUM: Running sum *
* CNTR: Counter *
* NUM: Number inputted *
*

REAL SUM, CNTR, NUM
hdkkhkhkdhkdkdhkhkdhkhkkhhkkkkkkkkkh kb bk ke ko k kb b kk ke khkhkkhkkhkhkkkkhd

*

_* INITIALIZE VARIABLES
SUM = 0
CNTR= 0
%
_* INPUT NUMBER, ADD IT TO THE SUM, INCREMENT COUNTER, AND THEN
* REPEAT UNTIL TWO NUMBERS HAVE BEEN ENTERED
DO 10 CNTR = 1, 2

/—\/*-/\/\f«//\,—/\,f\/\.\w

37

Executable Code Generation

Coded
Source < program
code

v

: V4 =\
Compile)
stage < . Compiler =
I N
FIGURE 13-11
Object Other - -
code object code Compiler and
A A - -
\ \ / linkage editor.
o A compilar and a
- Linkage >L|nk-ed|t))
editor stage linkage editor conwvart
sourca coda into
S

o exacutable code.
oal
module
(executable program;
can be retained for
future use) 7

0 | 1

(execution) < CPU
stage running
rogram

Output
from program
A

© Cengage Learning

N

38

Executable Code Generation

Translate Coded Programs into Executable Code

e Source code => object code the computer can execute
 Assemblers convert assembly language
e Compilers - static

— Language translator that converts an entire program into machine
language before executing it (once)

— Designed for specific programming languages such as Java or Python
— Note simple single HLy = x + 2 => 3 machine instructions

* MOVX, 2

e add 2, r2

°* mov res, y
— Interpreters - dynamic

* Translates one line of code at one time

* Translated over and over each time it is run

39

PDLC Debugging & Testing

e Program Debugging and Testing

— The process of ensuring a program is free of errors (bugs)
and works as it is supposed to

 Preliminary Debugging
— Compiler and Syntax Errors

e As programs are compiled or interpreted, errors occur
which prevent the program from running properly

— Syntax errors occur when the programmer has not
followed the rules of the programming language

40

PDLC Debugging & Testing

— Logic errors are errors in the logic of the program
 Program will run but produce incorrect results

e Dummy print statements can help locate logic errors
and other run time errors

e |DEs with step debugging useful
— Run Time and Logic Errors

— Run time errors occur when the program is running

41

PDLC Debugging & Testing

— Testing

e Occurs after the program appears to be correct to find
any additional errors

e Uses good test data—data that is very similar to the
actual data that will be used in the program

e Tests conditions that will occur when the program is
implemented

e Checks for coding omissions (i.e., product quantity
allowed to be < 0)

e Edge testing of boundary conditions

42

PDLC — Debugging & Testing

e Testing => 2 stages
— Alpha test—internal on-site test
— Beta test—outside test

e Testing Documentation: Completed Program Package

e Copy of the test data, test results, finished program
code, and other documentation generated during the
testing phase should be added to the program package

— Developer documentation
— User documentation

43

PDLC — Implementation & Maintenance

e Program Implementation and Maintenance

— Once the system containing the program is up and
running, the implementation process is complete

— Program maintenance

e Process of updating software so it continues to be
useful

e Very costly
— Documentation: Amended program package

 Program package should be updated to reflect new
problems or issues that occur and what changes to the
program were necessary

a4

PDLC Tools

e Application Lifecycle Management (ALM) Tools

— Creating and managing an application during its entire
lifecycle, from design through retirement

— Tools include:
e Requirements management

— Keeping track of and managing the program
requirements as they are defined and then
modified

e Configuration management

— Keeping track of the progress of a program
development project

45

PDLC Tools

e Application Generators
— Software program that helps programmers develop
software

— Macros
e Record and play back a series of keystrokes

 Programmers write them in a macro programming
language such as Visual Basic for Applications

— Report and Form Generators

e Tools that enable individuals to prepare reports and
forms quickly

46

PDLC Tools

e Device Software Development Tools

— Assist with developing embedded software to be used on
devices, such as cars, ATM machines, and consumer
devices

e Software Development Kits (SDKs) and Application Program
Interfaces (APIs)
— Designed for a particular platform

— Enables programmers to develop applications more quickly
and easily

e Often released by hardware or software companies

—i0S SDK—allows third party developers to create
new applications for iPhone, iPad, iPod Touch

47

PDLC Tools

e Application Program Interfaces (APlIs)

 Help applications interface with a particular operating
system/environment

e Often used in conjunction with Web sites
e Rich Internet Application (RIA) Tools

— Web-based applications that work like installed software
programs

— Desktop RIA can access local files and used without an
Internet connection

— Web-based RIAs are common
— Tools to develop RIAs
e Adobe AIR

48

| Agile/Extreme Programming

e Agile software development
— Goal is to create software rapidly
— Embraces iterative approach
— Focuses on building small functional program pieces
during the project
— Includes earlier adaptive software approaches such

as RAD (rapid application development) and
extreme programming (XP)

49

| Summary

e Approaches to Program Design and Development
e The Program Development Life Cycle (PDLC)

e Tools for Facilitating Program Development

* Programming Languages

Understanding Computers: Today and Tomorrow, 14th Edition 50

	Slide Number 1
	Programming
	Programming Language Evolution
	Low Level Languages (1st/2nd Gen)
	Assembly Language
	High Level Languages
	High Level Programming Paradigms
	Procedural/Structured�Control Structures
	Sequential Execution
	Selection
	Repetition
	Structured Programming Control Structures
	Procedural Programming
	Top Down Decomposition
	Structured High Level Language Ex => Cobol
	Cobol(3rd Gen)
	Structured High Level Language Ex => C (C, C++)
	C++
	Object Oriented Design
	Approaches to Design and Development
	Object Oriented Design
	OOD Example => Java
	Java
	Programming Languages
	The Program Development�Life Cycle (PDLC)
	PDLC - Analysis
	PDLC - Design
	PDLC – Design Tools
	PDLC – Design Tools
	PDLC – Design Tools
	PDLC – Object Oriented Design (OOD)
	PDLC – Design Tenets
	PDLC – Design Testing
	PDLC - Coding
	PDLC - Coding
	PDLC – Coding Standards
	PDLC – Coding Example
	Executable Code Generation
	Executable Code Generation
	PDLC Debugging & Testing
	PDLC Debugging & Testing
	PDLC Debugging & Testing
	PDLC – Debugging & Testing
	PDLC – Implementation & Maintenance
	PDLC Tools
	PDLC Tools
	PDLC Tools
	PDLC Tools
	Agile/Extreme Programming
	Summary

