
Chapter 11:

Program Development
and Programming

Languages

Programming

VonNeumann Architecture

– CPU, Memory, Storage
– Input, processing, output (IPO) cycle (text adds storage => IPOS)
– Stored program => becomes dynamic process in execution

• Process has resources allocated by OS (CPU, Files, Internet Connections, Printers, etc.)
• Process memory has Code, Data, Stack segments

Syntax & Semantics

– Syntax - words, symbols, and codes used to write computer programs

– Semantics – rules & logic

Variables => named symbols in memory

recall we must abstract and represent our real world in a computer

Boolean values => truth values (often determined in test)

– 3 > 2 is true… if x = 3… x > 2 is true

2

Programming Language Evolution

• Generations
– 1st Gen – Machine Language
– 2nd Gen – Assembly Language
– 3rd Gen – High Level
– 4th Gen – Declarative/SQL*

* Note this is speculation

3

Low Level Languages (1st/2nd Gen)

– Low-Level Languages (earliest programming languages)
• 1st Gen - Machine language

– Written at a very low level, just using 1s and 0s
• 2nd Gen - Assembly language

– Includes some names and other symbols to replace
some of the 1s and 0s in machine language

– 1 to 1 mapping of assembly instructions to machine
instructions

– Machine dependent
» Written for one specific type of computer

4

Assembly Language

5

High Level Languages

– High-Level/3rd Generation Languages
• Closer to natural languages
• Machine independent (portable)
* Also visual or graphical languages

– Use graphical interface to create programs any
paradigm

– Designed for educational/project mgmt. purposes

6

High Level Programming Paradigms

A paradigm is a model
To write a program, appropriate software for the
application/programming language to be used is needed

4 Programming Paradigms =>

– Procedural/Structured (we’ll look at these first)
• Cobol, C, Fortran

– Object Oriented
• Java, Python, C++/C#
* Note OOP has procedural constructs

– Logical/Declarative => Prolog
– Functional => Lisp

7

Procedural/Structured
Control Structures

• Control Structure (Structured Programming)
– A pattern for controlling the flow of logic in a computer

program, module, or method

• 3 Control Structures
– Sequential execution (default)
– Selection execution (Boolean decision structure)
– Repetition/Iteration execution (has Boolean decision structure)

• repeated actions based on decision structure

* 4th - Sub-programs (e.g. functions/procedures/methods/etc.)

• See Truth Tables in ciss100.com => Programming (both handouts
and video)

8

Sequential Execution

• The Sequence Control Structure
– Series of statements that

follow one another
– Default execution path

• Ex. Statements:
x = x + 2;
y = x;

*Note diagram blocks have single
entry and exit

9

Selection

• The Selection Control Structure
– Multiple paths, exit direction depends on result of a certain

condition (logical determination of truth value)
» If-then-else (Can be just if-then)

if (x > 2) (x > 2 is Boolean and has a truth value)

then perform some action
else perform a different action

– Case control structure (switch)
» Allows for as many possible results of the specified

condition as needed

10

Repetition

• Repetition Control Structure (Iteration or Loops)
– Repeat series of steps based on decision structure

» While/For (Boolean test at entry)
» While x > 0
» Loop may never be entered

» Do-while/Repeat-Until (test at exit)
» While/Until statement is last statement in loop
» Loop always executed once

» 3 parts of loop
» Initialization (outside of loop or in For statement)
» Test
» Body
» Update

11

Structured Programming Control
Structures

12

Procedural Programming

• Procedural Programming
– Design where program separated into small

modules/procedures
• Procedure called by main program or another
• Allows each procedure to be performed as many times as

needed; multiple copies of code not needed
• Top Down

– Decomposition
– Stepwise refinement to solve problem

• Bottom Up
– Library Development
– Tool kits

13

Top Down Decomposition

14

Structured High Level Language Ex => Cobol

– COBOL

• Designed for business transaction processing
• Makes extensive use of modules
• Strength lies in batch processing and its stability
• Programs are lengthy and take a long time to write
• Considered to be outdated by some
• New versions are evolving

– COBOL.NET

15

Cobol(3rd Gen)

16

Structured High Level Language Ex => C (C, C++)

– C, C++, and C#
• C

– Much closer to assembly language than other high-
level languages

– Designed for system programming
• C++

– Object-oriented versions of C
– Very popular for graphical applications

• C# (C sharp)
– Used to create Web applications and XML-based

Web services
• Objective-C:

– For iPhone and other Apple applications (dated)
=> Now Swift which can be integrated w/Obj-C

17

C++

18

Object Oriented Design

• Object-Oriented Programming (OOP & OOD)
– Programs consist of a collection of objects that

contain data and methods to be used with that data
(uses procedural constructs within OOP)
• Class

– Group of objects that share some common
properties

• Instance/Object
– An individual object in a class

19

Approaches to Design and
Development

• Attributes/Data => state of an object
• Behaviors/Methods => Perform actions on an object
• UML below introduced in Sys Analysis chapter

20

Object Oriented Design

• OOD & OOP
• Encapsulation

– Bundles data/methods to work on data within class
– Hides the internal representation/state=> Security
– Checking Acct Example

• Inheritance
– Derives & extends parent class to child class
– Supports code reuse

• Polymorphism
– Many forms => class can override parents methods

21

OOD Example => Java

– Java
• High-level, object-oriented programming language

frequently used for Web-based applications
• Contain Structured components
• Java programs are compiled into bytecode
• Can run on any computer that includes Java Virtual

Machine (Java VM)
• Is one of the most popular programming languages

today

22

Java

23

Programming Languages

– Fourth-Generation Languages (4GLs)
• Even closer to natural languages and easier to work

with than high-level
• Declarative rather than procedural
• Includes structured query language (SQL) used with

databases

24

The Program Development
Life Cycle (PDLC)

• Program Development
(application software
development)
– The process of

creating
application
programs

• Program Development
Life Cycle (PDLC)
– The five phases of

program
development

25

PDLC - Analysis

• Problem Analysis
– The problem is considered and the program specifications

are developed
• Specifications developed during the PDLC are reviewed

by the systems analyst and the programmer (the
person who will code the program)

• Goal is to understand the functions the software must
perform

– Documentation: Program Specifications
• Result of the first phase of the PDLC outlining what the

program must do

26

PDLC - Design

• Program Design
– The program specifications are expanded into a complete

design of the new program
• Algorithm for the program is developed
• Careful planning and design of a computer program are

extremely important

27

PDLC – Design Tools

Program Design Tools
=> diagrams, tables, models and structure/hierarchy charts

• hierarchy chart depict organization of a program
=> top down design

• Flowcharts
– Show graphically, step-by-step, how a computer program will

process data
– Use special symbols and relational operators
– Can be drawn by hand or with flowcharting software

• Pseudocode
– Uses English-like statements to outline the logic of a

program rather than the flowchart’s graphical symbols
• Object Oriented Design – Unified Modeling Language

28

PDLC – Design Tools

29

PDLC – Design Tools

30

PDLC – Object Oriented Design (OOD)

• Unified Modeling
Language (UML)
Models

– Set of standard
notations for
creating business
models

– Widely used in
object-oriented
programs

– Includes class
diagrams and use-
case diagrams

31

PDLC – Design Tenets

– Good Program Design
• Essential
• Saves time
• Good Program Design Principles

– Be Specific
» All things the program must do or consider must

be specified
– Follow the One-Entry-Point/One-Exit-Point Rule
– No Infinite Loops or Logic Errors

» Infinite loop is a series of steps that repeat
forever

32

PDLC – Design Testing

– Program Design Testing
• Design should be tested to ensure logic is correct

– Desk check
– Trace tables

– Documentation: Design Specifications
• Illustrates the program needed to fulfill the program

requirements
• Expressed using structure charts, flowcharts,

pseudocode, and UML models
• Include any test data and results from desk checking

33

PDLC - Coding

• Program Coding
– The program code is written using a programming

language
– Choosing a Programming Language

• Suitability to the application
• Integration with other programs
• Standards for the company
• Programmer availability
• Portability if being run on multiple platforms
• Development speed

34

PDLC - Coding

– The Coding Process
• Coding Standards

– Rules designed to standardize programming
– Makes programs more readable and easier to

maintain
– Includes the proper use of comments to:

» Identify the programmer and last
modification date

» Explain variables used in the program
» Identify the main parts of the program

35

PDLC – Coding Standards

– Reusable code
• Pretested, error-free code segments that can be

used over and over again with minor modifications
• Can greatly reduce development time

– Documentation: Documented Source Code
• Program coding phase results in the program written in

the desired programming language
• Should include enough comments (internal

documentation) so that the source code is easy to
understand and update

36

PDLC – Coding Example

37

Executable Code Generation

38

Executable Code Generation

Translate Coded Programs into Executable Code
• Source code => object code the computer can execute

• Assemblers convert assembly language
• Compilers - static

– Language translator that converts an entire program into machine
language before executing it (once)

– Designed for specific programming languages such as Java or Python
– Note simple single HL y = x + 2 => 3 machine instructions

• mov x, r2
• add 2, r2
• mov res, y

– Interpreters - dynamic
• Translates one line of code at one time
• Translated over and over each time it is run

39

PDLC Debugging & Testing

• Program Debugging and Testing
– The process of ensuring a program is free of errors (bugs)

and works as it is supposed to

• Preliminary Debugging
– Compiler and Syntax Errors

• As programs are compiled or interpreted, errors occur
which prevent the program from running properly

− Syntax errors occur when the programmer has not
followed the rules of the programming language

40

PDLC Debugging & Testing

– Logic errors are errors in the logic of the program
• Program will run but produce incorrect results
• Dummy print statements can help locate logic errors

and other run time errors
• IDEs with step debugging useful

– Run Time and Logic Errors
– Run time errors occur when the program is running

41

PDLC Debugging & Testing

– Testing
• Occurs after the program appears to be correct to find

any additional errors
• Uses good test data—data that is very similar to the

actual data that will be used in the program
• Tests conditions that will occur when the program is

implemented
• Checks for coding omissions (i.e., product quantity

allowed to be < 0)
• Edge testing of boundary conditions

42

PDLC – Debugging & Testing

• Testing => 2 stages
– Alpha test—internal on-site test
– Beta test—outside test

• Testing Documentation: Completed Program Package
• Copy of the test data, test results, finished program

code, and other documentation generated during the
testing phase should be added to the program package

– Developer documentation
– User documentation

43

PDLC – Implementation & Maintenance

• Program Implementation and Maintenance
– Once the system containing the program is up and

running, the implementation process is complete
– Program maintenance

• Process of updating software so it continues to be
useful

• Very costly
– Documentation: Amended program package

• Program package should be updated to reflect new
problems or issues that occur and what changes to the
program were necessary

44

PDLC Tools

• Application Lifecycle Management (ALM) Tools
– Creating and managing an application during its entire

lifecycle, from design through retirement
– Tools include:

• Requirements management
– Keeping track of and managing the program

requirements as they are defined and then
modified

• Configuration management
– Keeping track of the progress of a program

development project

45

PDLC Tools

• Application Generators
– Software program that helps programmers develop

software
– Macros

• Record and play back a series of keystrokes
• Programmers write them in a macro programming

language such as Visual Basic for Applications
– Report and Form Generators

• Tools that enable individuals to prepare reports and
forms quickly

46

PDLC Tools

• Device Software Development Tools
– Assist with developing embedded software to be used on

devices, such as cars, ATM machines, and consumer
devices

• Software Development Kits (SDKs) and Application Program
Interfaces (APIs)
– Designed for a particular platform
– Enables programmers to develop applications more quickly

and easily
• Often released by hardware or software companies

– iOS SDK—allows third party developers to create
new applications for iPhone, iPad, iPod Touch

47

PDLC Tools

• Application Program Interfaces (APIs)
• Help applications interface with a particular operating

system/environment
• Often used in conjunction with Web sites

• Rich Internet Application (RIA) Tools
– Web-based applications that work like installed software

programs
– Desktop RIA can access local files and used without an

Internet connection
– Web-based RIAs are common
– Tools to develop RIAs

• Adobe AIR

48

Agile/Extreme Programming

• Agile software development
– Goal is to create software rapidly
– Embraces iterative approach
– Focuses on building small functional program pieces

during the project
– Includes earlier adaptive software approaches such

as RAD (rapid application development) and
extreme programming (XP)

49

Summary

• Approaches to Program Design and Development
• The Program Development Life Cycle (PDLC)
• Tools for Facilitating Program Development
• Programming Languages

Understanding Computers: Today and Tomorrow, 14th Edition 50

	Slide Number 1
	Programming
	Programming Language Evolution
	Low Level Languages (1st/2nd Gen)
	Assembly Language
	High Level Languages
	High Level Programming Paradigms
	Procedural/Structured�Control Structures
	Sequential Execution
	Selection
	Repetition
	Structured Programming Control Structures
	Procedural Programming
	Top Down Decomposition
	Structured High Level Language Ex => Cobol
	Cobol(3rd Gen)
	Structured High Level Language Ex => C (C, C++)
	C++
	Object Oriented Design
	Approaches to Design and Development
	Object Oriented Design
	OOD Example => Java
	Java
	Programming Languages
	The Program Development�Life Cycle (PDLC)
	PDLC - Analysis
	PDLC - Design
	PDLC – Design Tools
	PDLC – Design Tools
	PDLC – Design Tools
	PDLC – Object Oriented Design (OOD)
	PDLC – Design Tenets
	PDLC – Design Testing
	PDLC - Coding
	PDLC - Coding
	PDLC – Coding Standards
	PDLC – Coding Example
	Executable Code Generation
	Executable Code Generation
	PDLC Debugging & Testing
	PDLC Debugging & Testing
	PDLC Debugging & Testing
	PDLC – Debugging & Testing
	PDLC – Implementation & Maintenance
	PDLC Tools
	PDLC Tools
	PDLC Tools
	PDLC Tools
	Agile/Extreme Programming
	Summary

