Understanding Computers Today and

Carl Marile

Chapter 10: Information Systems and System Development

What Is an Information System?

- System
 - Collection of elements and procedures that interact to accomplish a goal
 - Football game, transit systems, etc.
- Information System
 - A system
 used to generate the
 information needed to support
 the users in an organization

Components of an

Information system.

What Is an Information System?

- Enterprise Architecture/Enterprise Resource Planning (ERP)
 - Provides a detailed picture of an organization, its function, its systems, and the relationship among them
 - Allows managers to organize and maximize the use of IT resources and make better decisions
 - Not easy to develop and requires time and effort, but once in place, it is an invaluable decision support tool

Information System Users

- Other Groups
 - Non-management workers
 - External users (customers, suppliers, other partners, etc.)

System Development Life Cycle (SDLC)

- Planning/Problem Identification
- Analysis
- Design
 - Acquisition (text includes as separate phase)
- Implementation
- Maintenance

Responsibility for System Development

- Internal
- Outsourced
 - Hiring outside vendors to perform specific business tasks
 - Offshore
 - Outsourced to another country
 - Nearshoring
 - Outsourcing to nearby countries
 - Homesourcing (homeshoring)
 - Outsourcing to home-based workers

SDLC Approaches

- Waterfall model
 - Each phase begins only when previous one is completed
 - Time-consuming
- The Iterative Approach
 - System is developed incrementally
 - Steps are repeated until the system is finalized
 - Prototyping
 - Small model, or prototype, of the system is built before the full-scale development effort is undertaken

SDLC Approaches

until the final version is reached.

1. Planning/Problem Identification

- Phase 1
- Identify problem => is organization/operations competitive
 - New threats
 - New technologies
 - Inefficiencies
 - New laws (Sarbanes-Oxley Act, HIPAA etc.)
 - Changes to the legal requirements for retaining business data (e-disclosure, etc.)

2. Analysis

- Phase 1 planning inputs (deliverables) into phase 2
 - Again note development should be iterative
- What's out there options?
- Cost-Benefit Analysis
 - Considers both tangible and intangible benefits to determine if the benefits of the new system outweigh the cost

SDLC Analysis

- Analysis results put into Diagrams, Tables, Trees, and Models
- Also contains instruments used for data gathering and other tools used to summarize and analyze the data
 - Questionnaires
 - Interview questions
 - Environmental analysis

→ Capture and record everything for documentation and institutional learning and experience

SDLC Analysis Tools

- Entity-Relationship Diagrams (ERDs) and Data Flow Diagrams (DFDs)
 - Used to model the entities in a system and the flow of data within the system
 - Provides a visual representation of the data movement in an organization
- Decision Tables and Decision Trees
 - Useful for identifying procedures and summarizing the decision making process of one step of a system
- Class Diagrams and Use Case Diagrams
 - Object-oriented systems

The System Development Life Cycle (SDLC)

FIGURE 12-23

Data flow diagrams and decision tables. These tools are frequently used to analyze a system during the system analysis phase of the SDLC.

Understanding Computers: Today and Tomorrow

Unified Modeling Language (UML) & Use Case Diagrams

© Cengage Learning

CLASS DIAGRAM

Lists the attributes and methods that all instances in the class (in this case the Customer class) possess.

USE CASE DIAGRAM

Lists a user of the system (in this case a real customer) and its use cases (the actions the user may take).

FIGURE 12-24

Class and use case diagrams. These tools are frequently used to model object-oriented systems.

3. SDLC Design

- System Design
 - Specifies what the new system will look like and how it will work (input from phase 2 analysis)
 - Developing the Design and Specifications for the New System
 - Model of new system is developed; diagrams can include:
 - Data dictionary
 - » Describes all data in a system
 - Data flow and/or class diagrams of the new system
 - Input/output designs

Rapid Application Development & Joint Application Development RAD & JAD

- The End-User Development Approach
 - User is primarily responsible for the development of the system
 - Most feasible when system being developed is small and inexpensive
 - Measures must be taken to ensure that the system is compatible with existing systems and no new problems are introduced

SDLC Design

- RFPs and RFQs
 - RFP is a Request for Proposal
 - Contains list of technical specifications for equipment, software, and services needed
 - RFQ is a Request for Quotation
 - Names desired items needed and asks for a quote
- Evaluating Bids
 - Most companies have procedures for evaluating bids
 - Benchmark test
 - Evaluation tables

SDLC Design

- Design Deliverables => Output
 - Prototypes
 - RFPs, RFQs, and Vendor Evaluation Materials
 - Includes RFP or RFQ sent to potential vendors
 - Proposals received
 - Documentation produced during the evaluation of bids

SDLC Acquisition

- System Acquisition (note many authors include this in implementation)
- System analysts determine where to obtain the necessary hardware, software, and other system components
- The Make-or-Buy Decision
 - Determining if the software needed will be purchased from a vendor or developed in-house
 - If developed in-house, software to be developed moves into the program development process (Chapter 11)

4. SDLC Implementation

- System Implementation
 - The new system is installed, tested, and made operational
 - Data migration
 - System must be thoroughly tested
 - Test data should be realistic and include incorrect data

Implementation Conversion

- System Conversion done when testing phase is completed, system is installed
 - Direct conversion
 - » Old system deactivated and new system is immediately implemented
 - Parallel conversion
 - » Both systems are operated simultaneously until it is determined that the new system works properly
 - Phased conversion
 - » System is implemented by module
 - Pilot conversion
 - » New system used at just one location within the organization

The System Development Life Cycle (SDLC)

- Implementation schedule, test data, test results, training materials should be saved for future reference
- User Training
 - All training manuals should be developed and given to users
 - Training takes place on the actual system
 - Can occur one-on-one or in groups
- Documentation: Implementation Schedule, Test Data and Results, and Training Materials

5. SDLC Maintenance

- System Maintenance
 - Most expensive phase
 - Maintenance is an ongoing process
 - Minor adjustments are made to the finished system to keep it operational until the end of the system's life or until the time that the system needs to be redesigned
 - Post-Implementation Review
 - Identifies any glitches in the new system that need to be fixed
 - When a major change is needed, the project goes through the SDLC again

SDLC Maintenance

- Documentation => Completed Project Folder
 - Results of the post-implementation review are added to the accumulated documentation
 - Information can be useful to auditors who may check to see that proper procedures were followed

Types of Information Systems Office & User Productivity

- Office and User Productivity Support Systems
 - A system used to facilitate communications and enhance productivity
 - Used by virtually all employees
 - Document Processing Systems
 - Hardware and software used to create electronic documents
 - Document Management Systems (DMSs) and Content Management Systems (CMSs)
 - Document Management System
 - Stores, organizes, and retrieves electronic documents

Types: Communication Systems

- Communication Systems
 - Allow employees to communicate with each other, with business partners, and with customers
 - E-mail
 - Messaging
 - Videoconferencing
 - Collaborative (workgroup) computing
 - Telecommuting

Types: Transaction Processing

- Transaction Processing Systems (TPSs)
 - Processes and records data created by an organization's business transactions
 - Usually processed in real time
 - Order Entry Systems
 - E-commerce systems
 - Financial transactions performed over the Internet
 - Point-of-sale (POS) systems
 - Records purchases at the place where the customer physically purchases a product or service
 - Payroll Systems
 - Used to compute employee taxes, deductions, and pay
 - Accounting Systems
 - Accounts receivable systems
 - Accounts payable systems
 - General ledger systems

FIGURE 12-6

Electronic citation systems. This type of transaction processing system allows officers to issue citations electronically.

Types: MIS & DSS

- Management Information Systems
- Decision Support Systems
- Operational, Tactical and Strategic Decision making
- Uncertainty/Unstructured data increase higher in pyramid
- Timeframes lengthen higher in the period

Types: MIS

- Management Information Systems (MIS)
 - Provides decision makers with regular, routine, and timely information that is used to make decisions
 - Usually provides information in the form of computergenerated reports
 - Detailed, summary, exception
 - Much of the time, this information is generated from data obtained from transaction processing
 - Most frequently used to make moderately structured, middle-management decisions

Types: DSS

- Decision Support Systems (DSSs)
 - Provides people with the tools and capabilities to organize and analyze their decision making information
 - Typically are interactive and provide information on demand
 - Most often used by middle and executive managers who require unstructured, unpredictable on-demand information
 - Incorporates internal and external data
 - Usually tailored to help with specific types of decisions such as sales and transportation
 - Executive Information system (EIS)
 - A DSS targeted directly to upper management

Types: Enterprise Systems

- Integrated Enterprise System
 - Designed to work together throughout an enterprise
 - Electronic Data Interchange (EDI)
 - Transfers data between different companies using the Internet or another network
 - Often used to automate reordering materials and products
 - Enterprise Resource Planning (ERP)
 - Large integrated system that ties together all of a business's activities
 - Enterprise Application Integration (EAI)
 - Exchanging information from an ERP or other internal system among different applications and organizations

Types: Inventory, Supply, Value Chain

- Inventory and Product Management Systems
 - Tracks and manages inventory
 - Can help optimize ordering
- Supply Chain Management (SCM)
 - Oversees materials, information, and finances as they move from the original supplier to the consumer
- Just-in-time (JIT)
 - Resources are limited to the right amount at the right time to fill orders
- Warehouse Management Systems (WMS)
 - Acts as a complete distribution system

Types: Intelligent Agents

- Intelligent Agents
 - Programs that perform specific tasks to help to make a user's work environment more efficient or entertaining and that typically modifies its behavior based on the user's actions
 - Application assistants
 - Shopping bots
 - Entertainment bots
 - Chatterbots
 - May be part of Semantic Web
 - Predicted evolution of the current Web

FIGURE 12-13 A Web page chatterbot.

Types: Expert Systems

- Expert Systems (AI)
 - Provides the type of advice that would be expected from a human expert and has two main components
 - Knowledge Base
 - Database containing facts provided by human experts and rules the system should use to make decisions based on those facts
 - Inference Engine
 - Program that applies the rules to the data stored in the knowledge base, in order to reach decisions
 - Is only as good as the knowledge base and inference engine; also needs honest, correct information from the user in order to work correctly

Types: Neural Networks

- Neural Networks (AI)
 - A system in which the human brain's pattern-recognition process is emulated by the computer
 - Used in:
 - Handwriting, speech, and image recognition
 - Medical imaging
 - Crime analysis
 - Biometric identification
 - Vision systems (quality checks in manufacturing, recognizing postage stamps, etc.)

35

of Crossmatc

Types: Robotics

- Robotics
 - The study of robot technology
 - Robot
 - A device, controlled by a human operator or a computer, that can move and react to sensory input
 - Military Robots
 - Investigate caves, buildings, trails, etc., before soldiers enter
 - Locate and defuse explosive devices
 - Provide surveillance
 - Exoskeleton Suit
 - » Wearable robotic systems designed to give an individual additional physical capabilities and protection

Summary

- What Is an Information System?
- Types of Information Systems
- Responsibility for System Development
- The System Development Life Cycle (SDLC)
- Approaches to System Development