16th Edition Understanding Computers Today and Tomorrow Comprehensive

Chapter 2 The System Unit, Processing, and Memory

Deborah Morley Charles S. Parker

Overview

- This chapter covers:
 - How computers represent data and program instructions
 - How the central processing unit (CPU) and memory are arranged with other components inside the system unit
 - How a CPU performs processing tasks
 - Several strategies are used today to create faster and better computers today and in the future

Data and Program Representation

- Digital data representation is the process of representing data in digital form so it can be understood by a computer
 - Coding systems are used to represent data and programs in a manner understood by the computer
 - Digital computers can only understand two states, off and on (0 and 1)

FIGURE 2-1

Ways of representing 0 and 1. Binary computers recognize only two states—off and on—usually represented by 0 and 1.

Digital Data Representation

- A **bit** is the smallest unit of data that a binary computer can recognize (a single 1 or 0)
 - Can be interpreted as 0/1 or True/False
 - True/False is Boolean value
 - Denoted w/lowercase b
- A byte contains 8 bits
 - Byte terminology used to express the size of files (documents, programs, etc.)
 - Byte is smallest addressable unit in Memory
 - Contents
 - Address
 - Denoted w/uppercase B
 - Be aware of files measured in Bytes (B) and Network speeds measured in b/s

FIGURE 2-2

Bits and bytes. Document size, storage capacity, and memory capacity are all measured in bytes.

Bytes & Sizes

- Prefixes are often used to express larger quantities of bytes:
 - 1000 = kilobyte (KB)
 - 1 Million = megabyte (MB)
 - 1 Billion = gigabyte (GB)
 - 1 Trillion terabyte (TB), petabyte (PB), exabyte (EB), zettabyte (ZB), yottabyte (YB)

Representing Numerical Data: The Binary Numbering System

- The binary numbering system uses only two symbols (1 and 0) to represent all possible numbers
 - The numbering system computers use (Von Neumann)
- The decimal numbering system uses 10 symbols (range 0-9)
 The numbering system people use
- In both systems, the position of the digits determine the power to which the base number (such as 10 or 2) is raised
- Please read ciss100.com numbering systems introduction:
 - <u>http://www.ciss100.com/lecture-topics-</u> <u>modules/architecture-hardware/numbering-systems/</u> and textbook ASCII coding charts

Example of the Decimal and Binary Numbering Systems

Symbolic Representation

- We learned we can represent:
 - Numbers (Binary)
 - Truth values (Boolean => True/False)
- We need to represent:
 - Text
 - Graphics
 - Audio
 - Objects => programming
 - Processes => programming

Coding Systems for Text-Based Data: ASCII and EBCDIC

- ASCII (American Standard Code for Information Interchange) is the coding system traditionally used with personal computers
 - Most commonly uses 8 bits
- EBCDIC (Extended Binary-Coded Decimal Interchange Code)
 - Developed by IBM, primarily for mainframes
 FIGURE 2-4

Some extended ASCII code examples.

CHARACTER	ASCII
0	00110000
1	00110001
2	00110010
3	00110011
4	00110100
5	00110101
А	01000001
В	01000010
С	01000011
D	01000100
E	01000101
F	01000110
+	00101011
1	00100001
#	00100011

Coding Systems for Text-Based Data: Unicode

- Unicode
 - Newer code consisting of 8 to 32 bits per character
 - Universal coding standard designed to represent textbased data written in any ancient or modern language, as well as thousands of other symbols and signs
 - Replacing ASCII as the primary text-coding system

FIGURE 2-5

Unicode. Many characters, such as these, can be represented by Unicode but not by ASCII or EBCDIC.

Coding Systems for Other Types of Data: Graphics Data

- Graphics data (still images such as photos or drawings) consist of bitmapped images made up of a grid of small dots called pixels
 - Monochrome graphic can only be one of two colors
 - Black or White
 - Requires just one bit for color representation
 - Images with more than two colors
 - Can use 4, 8, or 24 bits to store the color data for each pixel
 - Grayscale (ranges from white to black)
 - The number of bits per pixel depends on the type of image
 - JPEG images taken by most digital cameras today use 24-bit true color images; large images can be compressed
 - Common image formats include TIF, BMP, GIF, and PNG

Bitmapped Image Representation

8 x 8 cells/grid above

- 1 bit/cell/pixel => Black/White => 8 bytes
- 1 Byte/cell/pixel => Grayscale (0 255) => 64 bytes
- 3 Bytes/cell/pixel => RBG (1 Byte each for red/green/blue) => 192 bytes
- Add 4th Byte (32 bit) => 256 bytes
 - simulate texture => gradients/shadows/transparencies/etc.

Representing Graphics Data

One sample pixel: 1110

16-BIT IMAGE The color of each pixel is represented using 4 bits.

One sample pixel: 01110110

256-BIT IMAGE The color of each pixel is represented using 8 bits.

One sample pixel: 101001100100110111001011

TRUE COLOR IMAGE (16.8 million colors) The color of each pixel is represented using 24 bits. Source: United States Department of Agriculture

FIGURE 2-6

Representing graphics data. With bitmapped images, the color of each pixel is represented by bits; the more bits used, the better the image quality.

Vector Graphics (not in text)

- Mathematical Vector is magnitude and direction
- Vector Graphics are points on Cartesian plane
 - Connected lines and curves => polygons
 - Scale up/down without aliasing
 - => no loss in quality/no pixelation

Encoding Audio Data

- Audio data must be in digital form in order to be stored, processed or communicated (network) by a computer
 - Often compressed when sent over the Internet
 - MP3 files are 10 times smaller than their uncompressed digital versions
 - Compressed files download more quickly and take up less storage space
- Lossy vs. Lossless Compression
 - Lossy => Human Perception
 - Lossless => Data

Audio Digitization

MP3 BitRate = Bit Depth (vertical) x Sampling Rate (horizontal)

Digitization inherently lossy

Encoding Video Data

- Video data is displayed using a collection of frames, each frame contains a still image
 - Typically 24 frames per second
 - Amount of data can be substantial, but can be compressed
- Video digitization inherently lossy

Representing Software Programs: Machine Language

- Machine language is a binary-based language for representing computer programs the computer can execute directly (Instruction set => Architecture)
 - Early programs written in machine language (1st Gen)
 - Today's computers programs written in a High Level programming language
 - High Level PL translated by computer into machine language to run on computer
 - Compilation (static pre-execution)

– vs

• Interpretation (dynamic – during execution)

Inside the System Unit

- The system unit is the main case of a computer or mobile device
 - Houses processing hardware for a computer
 - Contains other components => storage devices, power supply, cooling hardware, one or more processors, several types of memory, and interfaces to peripheral devices
 - Interconnected through sets of wires called buses on the motherboard

Inside a Desktop System Unit

The Motherboard

- The **motherboard** is a circuit board consisting of computer chips, also called integrated circuits (ICs)
 - ICs contain interconnected components (such as transistors) to perform particular functions
 - All devices connect via a wired/wireless connection to the motherboard (wired directly or slots)
 - External devices connect by plugging into a port
 - Port is either built directly into the motherboard or created via an expansion card
 - Wireless external devices use either a transceiver or wireless networking technology

The Power Supply and Drive Bays

- The power supply connects to motherboard to deliver electricity
- Portable computers use rechargeable battery pack
 - Built-in batteries more difficult and expensive to replace, resulting in electronic waste (e-waste)
- Drive bays are rectangular metal racks inside the system unit that house storage devices
 - Hard drive, CD/DVD drive, flash memory card reader
 - Storage devices also connect to the motherboard

Processors and the CPU

- Processor consists of circuitry and components packaged together and connected directly to the motherboard
- The CPU (central processing unit) does the vast majority of processing for a computer
 - Called a microprocessor when talking about personal computers
 - Typically designed for a specific type of computer
 - Desktops, servers, and some notebook PCs use Intel or Advanced Micro Devices (AMD) processors
 - Portable computers and mobile devices often use Intel or AMD mobile processors(CISC) or an ARM processor (RISC) instead

Processing Speed

- Processing speed can be measured by the CPU's clock speed
 - Rated in megahertz (MHz) or gigahertz (GHz)
 - Higher CPU clock speed => more instructions processed per second
 - Alternate measure of processing speed is the number of instructions a CPU can process per second
 - Floating Point Operation -> flop
 - Megaflops (millions), gigaflops (billions), teraflops (trillions)
 - Benchmark tests can be used to evaluate overall processing speed

CPU Cores

- Multi-core CPUs contain the processing components (cores) of multiple independent processors in a single CPU
- **Dual-core CPUs** contain two cores
- Quad-core CPUs contains four cores
- Multi-core processors allow computers to work on more than one task at a time
 - They also typically use slower cores than single-core CPUS so have fewer heat problems

- The GPU
- The GPU (graphics processing unit) takes care of the processing needed to display images (including still images, animations) on the screen
 - Can be located on the motherboard, on a video graphics board, or in the CPU package
 - Mobile processors often integrate other capabilities into the processor package (system-on-a-chip (SoC))

FIGURE 2-10 A GPU.

Word Size

- A computer word is the amount of data that a CPU can manipulate at one time
 - In the past, CPUs used 32-bit words (referred to as 32-bit processors); today, most CPUs are 64-bit processors
 - Word size corresponds to memory to CPU bus width

Bus Width, Bus Speed, and Bandwidth

- A bus is an electronic path over which data can travel
 - Found inside the CPU and on the motherboard
 - Bus width is the number of wires in the bus over which data can travel
 - A wider bus allows more data to be transferred at one time
- Bus width and bus speed together determine the bus's bandwidth (the amount of data that can be transferred via the bus in a given time period)
- The amount of data actual transferred under real-life conditions is called **throughput**

Example of Bus Width

FIGURE 2-11

Bus width. A wider bus can transfer more data at one time than a narrower bus.

Buses Continued

- An expansion bus connects the CPU to peripheral (typically input and output) devices
- The **memory bus** connects the CPU directly to RAM
- The **frontside bus (FSB)** connects the CPU to the chipset that connects the CPU to the rest of the bus architecture

PCI, PCIe, and USB

- The PCI bus used to be the most common type of expansion bus
- Today, PCI Express (PCIe) buses are more common
 - PCle x16 is a 16-bit bus and is used to connect monitors to a computer
 - PCle x1 is a 1-bit bus and is used to connect other peripherals
 - PCIe buses are extremely fast
- A universal serial bus (USB) connects USB devices to a computer
 - 127 different devices can connect via a single USB port
 - Extremely versatile

Memory Hierachy

We will return to this chart below

Registers and ROM

- Registers are high-speed memory locations built into the CPU
 - Used to store data and intermediary results during processing
 - Fastest type of memory
- ROM (read-only memory) consists of non-volatile chips located on the motherboard into which data or programs permanently stored (boot process & UEFI Boot)
 - Retrieved by the computer when needed
 - Being replaced with flash memory

Cache Memory

- Cache memory is a special group of very fast circuitry usually built into the CPU (internal cache memory)
 - More cache memory typically means faster processing
 - Cache memory level numbers indicate the order in which the various levels of cache are accessed by the CPU
 - Level 1 is fastest, then Level 2, then Level 3

Memory

- Memory refers to chip-based storage, or locations that a computer uses to store data on a temporary basis
 - Volatile memory (content is erased when the device is shut off)
 - Non-volatile memory (content is retained when the device is shut off)
- Random access memory (RAM) is the computer's main memory or system memory
 - Stores essential parts of operating system, programs, and data the computer is currently using
 - Consists of electronic circuits etched onto chips
 - Mobile devices typically use embedded memory chips
 - Servers and personal computers use circuit boards called memory modules plugged into the motherboard

Memory Addressing

- Each location in memory has an address
 - Usually stored in one or more consecutive addresses, depending on its size
- Computer system sets up and maintains directory tables to facilitate retrieval of the data
- What's wrong with this image => zero based addressing

FIGURE 2-13 Memory addressing.

Characteristics of RAM

- Volatile
- Measured in bytes (amount dependent on CPU, operating system => address space)
- Most personal computers use SDRAM (synchronous dynamic)
- Double-Data Rate (DDR) RAM sends data twice as often as ordinary SDRAM or prior versions of RAM
 - DDR2, DDR3, DDR4
- Dual-channel memory architecture has two paths that go to and from memory; tri-channel (three paths) and quadchannel (four paths) memory architecture used for higher performance

Flash Memory

- Flash memory consists of nonvolatile memory chips that can be used for storage
 - Have begun to replace ROM for storing system information (BIOS)
 - Stores firmware for personal computers and other devices
 - Built into many types of devices (tablets, smartphones, and digital cameras) for user storage
 - Built into some storage devices (solid-state hard drives, USB flash drives, etc.)

Solid State Storage (not in text)

- NAND (Not And) (ex. USB Drives)
 - Inexpensive, High Capacity, High Write Speed, Medium Read Speed, Difficult Code Execution, Low Power Requirements
- NOR (Not Or)
 - Expensive, Lower Capacity, Low Write Speed, High Read
 Speed, Easy Code Execution, High Power Requirements

Memory Hierachy

See ciss100.com LM2 for Memory Hierachy presentation

Fans, Heat Sinks, and Other Cooling Components

- Fans are used on most personal computers to help cool the CPU and system unit
 - Heat is an ongoing problem for CPU and computer manufacturers
 - Can damage components
 - Cooler chips run faster
- Heat sinks are small components typically made out of aluminum with fins that help to dissipate heat
- Some portable computers and virtually all mobile devices don't include a fan; instead thermal transfer materials are used to spread out the heat generated

Other Types of Cooling Systems

- Liquid cooling systems
 - Cool the computer with liquid-filled tubes
- Immersion cooling
 - Hardware is actually submerged into units filled with a liquid cooling solution
- Notebook cooling stand
 - Cools the underside of a notebook computer
- Other cooling methods, such as ion pump cooling systems, are under development

Expansion Slots and Expansion Cards

- An expansion slot is a location on the motherboard into which expansion cards are inserted
- An expansion card is a circuit board inserted into an expansion slot
 - Used to add additional functionality or to attach a peripheral device
- Smaller devices may integrate capabilities directly into the device
- USB adapters can be used with portable computers and some mobile devices

Ports and Connectors

- A **port** is a connector on the exterior of a computer's system unit to which a device may be attached
 - Typical desktop computer ports HDMI to connect a monitor (VGA and Digital Video Interface (DVI) are older standards)
 - Network ports connect a device to a wired network
 - USB ports connect USB devices; can be USB-C
 - Others include IrDA and Bluetooth ports, flash memory card slots, audio ports, eSATA ports, and Thunderbolt ports (Apple)
 - Most computers support the Plug and Play standard
 - USB and Thunderbolt devices are hot-swappable

How the CPU Works

- The CPU (central processing unit) consists of a variety of circuitry and components packaged together
 - The transistor is the key element of the microprocessor
 - Made of semi-conductor material that controls the flow of electrons inside a chip
 - Today's CPUs contain hundreds of millions of transistors; the number doubles about every 18 months (Moore's Law)
 - Electronic impulses move from one part of the CPU to another to process data
 - The architecture and components included in a CPU (referred to as microarchitecture) vary from processor to processor

CPU Core Components

- The arithmetic/logic unit (ALU) performs arithmetic involving integers and logical operations
- The floating point unit (FPU) performs decimal arithmetic
- The control unit coordinates and controls activities within a CPU core
- The prefetch unit attempts to retrieve data and instructions before they are needed for processing in order to avoid delays

CPU Core Components (cont'd)

- The decode unit translates instructions from the prefetch unit so that they are understood by the control unit, ALU, and FPU
- The registers and internal cache memory store data and instructions needed by the CPU
- The **bus interface unit** allows the core to communicate with other CPU components

A CPU Core

The Machine (Fetch-execute) Cycle

- A machine cycle occurs whenever the CPU processes a single piece of microcode
 - It consists of four operations:
 - Fetch
 - Decode
 - Execute
 - Store

FIGURE 2-22

A machine cycle. A machine cycle is typically accomplished in four steps.

The System Clock

- The system clock is a timing mechanism within the computer system that synchronizes the computer's operations
 - Located on the motherboard
 - Sends out a signal on a regular basis to all computer components
 - Each signal is a cycle
 - Number of cycles per second is measured in hertz (Hz)
 - One megahertz = one million ticks of the system clock

Clock Speed

- Computers can run at a multiple or fraction of the system clock speed
 - Many PC system clocks run at 200 MHz; all devices run at a fraction or multiplier of the clock speed
 - A CPU clock speed of 2 GHz means the CPU clock "ticks" 10 times during each system clock tick
 - During each CPU clock tick, one or more pieces of microcode are processed
 - A CPU with a higher clock speed processes more instructions per second than the same CPU with a lower CPU clock speed

Strategies for Making Faster and Better **Computers:** Pipelining

- **Pipelining** allows multiple instructions to be processed at one time Stanes
 - A new instruction begins as soon as the previous instruction completes a stage of the machine cycle

FIGURE 2-25

Pipelining. Pipelining streamlines the machine cycle by executing different stages of multiple

instructions at the same time so that the different parts of the CPU are idle less often.

Fetch Instruction 1	Decode Instruction 1	Execute Instruction 1	Store Result Instruction 1	Fetch Instruction 2	Decode Instruction 2	Execute Instruction 2	WIT With finis befo
Stages							is st
Fetch Instruction 1	Fetch Instruction 2	Fetch Instruction 3	Fetch Instruction 4	Fetch Instruction 5	Fetch Instruction 6	Fetch Instruction 7	WITH With p is star instrue stage
	Decode Instruction 1	Decode Instruction 2	Decode Instruction 3	Decode Instruction 4	Decode Instruction 5	Decode Instruction 6	
		Execute Instruction 1	Execute Instruction 2	Execute Instruction 3	Execute Instruction 4	Execute Instruction 5	
			Store Result Instruction 1	Store Result Instruction 2	Store Result Instruction 3	Store Result Instruction 4	

IPELINING

elining, an instruction entire machine cycle ner instruction

INING

ing, a new instruction nen the preceding noves to the next pipeline.

Multiprocessing and Parallel Processing

- Using more than one processor or processor core is common today
 - Multiprocessing: Each processor or core typically works on a different job to process these jobs faster than with a single processor
 - 1 processor for executing Word Processor
 - 1 processor to play mp3
 - Parallel processing: Multiple processors or cores work together to process a single job as fast as possible
 - Multithreading: the ability of a CPU (or software) to execute multiple streams of instructions (called threads) within a single program at the same time

Sequential vs. Simultaneous Processing (from LM5)

FIGURE 5-7

Sequential vs.

simultaneous

processing.

Improved Architecture and Materials

- Improved architecture
 - Smaller components, faster memory, faster bus speeds, increasing number of CPU cores, integrated GPUs, support for virtualization, and increased 3D graphics processing
- Improved materials
 - Traditionally, CPUs used aluminum circuitry on silicon chips
 - Alternate materials include copper chips, and high-k, germanium and other III-V materials
 - Graphene consists of flat sheets are carbon one atom tall
 - Lightest and strongest known material
 - Graphene chips are faster than silicon chips and require less power

Nanotechnology

- Nanotechnology is the science of creating tiny computers and components less than 100 nanometers in size
 - Carbon nanotubes (CNTs) are tiny, hollow tubes of graphene
 - Graphene consists of flat sheets are carbon one atom tall
 - Lightest and strongest known material
 - Graphene chips are faster than silicon chips and require less power

Optical Computing and Silicon Photonics

- Optical computers use light to perform digital computations
 - Can be smaller and faster than electronic computers
 - Opto-electronic computers use both optical and electronic components
- Silicon photonics uses light for data transfers within and among silicon chips
 - Expected to be used to transfer very large quantities of data at very high speeds between chips in servers, mainframes, and supercomputers

Quantum Computing

- Quantum computing applies the principles of quantum physics and quantum mechanics to computers
 - Utilizes atoms or nuclei working together as quantum bits (qubits)
 - Qubits function simultaneously as the computer's processor and memory and can represent more than two states
 - Used for specialized applications, such as encryption and code breaking

FIGURE 2-30 Quantum computers. This vial of liquid contains a 7-qubit computer.